×

Entanglement entropy of gravitational edge modes. (English) Zbl 1522.83062

Summary: We consider the linearised graviton in \(4d\) Minkowski space and decompose it into tensor spherical harmonics and fix the gauge. The Gauss law of gravity implies that certain radial components of the Riemann tensor of the graviton on the sphere labels the superselection sectors for the graviton. We show that among these 6 normal components of the Riemann tensor, 2 are related locally to the algebra of gauge-invariant operators in the sphere. From the two-point function of these components of the Riemann tensor on \(S^2\) we compute the logarithmic coefficient of the entanglement entropy of these superselection sectors across a spherical entangling surface. For sectors labelled by each of the two components of the Riemann tensor these coefficients are equal and their total contribution is given by \(-\frac{16}{3}\). We observe that this coefficient coincides with that extracted from the edge partition function of the massless spin-2 field on the 4-sphere when written in terms of its Harish-Chandra character. As a preliminary step, we also evaluate the logarithmic coefficient of the entanglement entropy from the superselection sectors labelled by the radial component of the electric field of the U(1) theory in even \(d\) dimensions. We show that this agrees with the corresponding coefficient of the edge Harish-Chandra character of the massless spin-1 field on \(S^d\).

MSC:

83C45 Quantization of the gravitational field
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81P40 Quantum coherence, entanglement, quantum correlations
81P17 Quantum entropies

References:

[1] Buividovich, PV; Polikarpov, MI, Entanglement entropy in gauge theories and the holographic principle for electric strings, Phys. Lett. B, 670, 141 (2008) · doi:10.1016/j.physletb.2008.10.032
[2] W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D85 (2012) 085004 [arXiv:1109.0036] [INSPIRE].
[3] H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].
[4] D. Radičević, Notes on Entanglement in Abelian Gauge Theories, arXiv:1404.1391 [INSPIRE]. · Zbl 1388.83140
[5] H. Casini and M. Huerta, Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice, Phys. Rev. D90 (2014) 105013 [arXiv:1406.2991] [INSPIRE].
[6] W. Donnelly, Entanglement entropy and nonabelian gauge symmetry, Class. Quant. Grav.31 (2014) 214003 [arXiv:1406.7304] [INSPIRE]. · Zbl 1304.81121
[7] K.-W. Huang, Central Charge and Entangled Gauge Fields, Phys. Rev. D92 (2015) 025010 [arXiv:1412.2730] [INSPIRE].
[8] W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett.114 (2015) 111603 [arXiv:1412.1895] [INSPIRE].
[9] Ghosh, S.; Soni, RM; Trivedi, SP, On The Entanglement Entropy For Gauge Theories, JHEP, 09, 069 (2015) · Zbl 1388.81438 · doi:10.1007/JHEP09(2015)069
[10] Aoki, S.; Iritani, T.; Nozaki, M.; Numasawa, T.; Shiba, N.; Tasaki, H., On the definition of entanglement entropy in lattice gauge theories, JHEP, 06, 187 (2015) · Zbl 1388.81023 · doi:10.1007/JHEP06(2015)187
[11] W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev. D94 (2016) 104053 [arXiv:1506.05792] [INSPIRE].
[12] Soni, RM; Trivedi, SP, Aspects of Entanglement Entropy for Gauge Theories, JHEP, 01, 136 (2016) · Zbl 1388.81088 · doi:10.1007/JHEP01(2016)136
[13] K. Van Acoleyen, N. Bultinck, J. Haegeman, M. Marien, V.B. Scholz and F. Verstraete, The entanglement of distillation for gauge theories, Phys. Rev. Lett.117 (2016) 131602 [arXiv:1511.04369] [INSPIRE].
[14] H. Casini and M. Huerta, Entanglement entropy of a Maxwell field on the sphere, Phys. Rev. D93 (2016) 105031 [arXiv:1512.06182] [INSPIRE].
[15] Radičević, D., Entanglement in Weakly Coupled Lattice Gauge Theories, JHEP, 04, 163 (2016)
[16] Soni, RM; Trivedi, SP, Entanglement entropy in (3 + 1)-d free U(1) gauge theory, JHEP, 02, 101 (2017) · Zbl 1377.81133 · doi:10.1007/JHEP02(2017)101
[17] H. Casini and M. Huerta, Lectures on entanglement in quantum field theory, arXiv:2201.13310 [INSPIRE]. · Zbl 1186.81017
[18] V. Benedetti and H. Casini, Entanglement entropy of linearized gravitons in a sphere, Phys. Rev. D101 (2020) 045004 [arXiv:1908.01800] [INSPIRE].
[19] Anninos, D.; Denef, F.; Law, YTA; Sun, Z., Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions, JHEP, 01, 088 (2022) · Zbl 1521.81335 · doi:10.1007/JHEP01(2022)088
[20] G. Arfken and H. Weber, Mathematical Methods For Physicists International Student Edition, Elsevier Science, Amsterdam, The Netherlands (2005). · Zbl 1066.00001
[21] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, seventh ed., Elsevier/Academic Press, Amsterdam, The Netherlands (2007). · Zbl 1208.65001
[22] David, JR; Mukherjee, J., Partition functions of p-forms from Harish-Chandra characters, JHEP, 09, 094 (2021) · Zbl 1472.81218 · doi:10.1007/JHEP09(2021)094
[23] A. Higuchi, Symmetric Tensor Spherical Harmonics on the N Sphere and Their Application to the de Sitter Group SO(N ,1), J. Math. Phys.28 (1987) 1553 [Erratum ibid.43 (2002) 6385] [INSPIRE]. · Zbl 0656.58046
[24] Benedetti, V.; Casini, H.; Magan, JM, Generalized symmetries of the graviton, JHEP, 05, 045 (2022) · Zbl 1522.83056 · doi:10.1007/JHEP05(2022)045
[25] H. Casini, R. Montemayor and L.F. Urrutia, Duality for symmetric second rank tensors. 2. The linearized gravitational field, Phys. Rev. D68 (2003) 065011 [hep-th/0304228] [INSPIRE].
[26] S. Giombi, I.R. Klebanov and G. Tarnopolsky, Conformal QED_d, F-Theorem and the ϵ Expansion, J. Phys. A49 (2016) 135403 [arXiv:1508.06354] [INSPIRE]. · Zbl 1348.81454
[27] David, JR; Mukherjee, J., Hyperbolic cylinders and entanglement entropy: gravitons, higher spins, p-forms, JHEP, 01, 202 (2021) · Zbl 1459.83038 · doi:10.1007/JHEP01(2021)202
[28] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, JHEP, 09, 102 (2016) · Zbl 1390.83016 · doi:10.1007/JHEP09(2016)102
[29] Speranza, AJ, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP, 02, 021 (2018) · Zbl 1387.83011 · doi:10.1007/JHEP02(2018)021
[30] Camps, J., Superselection Sectors of Gravitational Subregions, JHEP, 01, 182 (2019) · Zbl 1409.81111 · doi:10.1007/JHEP01(2019)182
[31] Takayanagi, T.; Tamaoka, K., Gravity Edges Modes and Hayward Term, JHEP, 02, 167 (2020) · Zbl 1435.83186 · doi:10.1007/JHEP02(2020)167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.