×

Multivariate regression estimation with errors-in-variables: Asymptotic normality for mixing processes. (English) Zbl 0769.62028

Let \((X^ 0_ i,Y_ i)\), \(1\leq i\leq n\), be a strictly stationary sequence of random vectors with the same distribution as \((X^ 0,Y)\). Denote by \(m(x)=E[Y| X^ 0=x]\) the corresponding regression function. Rather than \(X^ 0_ i\) one observes \(X_ i=X^ 0_ i+\varepsilon_ i\). The authors consider nonparametric estimation of \(m\) from the observations \((X_ i,Y_ i)\), \(1\leq i\leq n\), under appropriate regularity and mixing conditions, by the Nadaraya-Watson estimator based on a proper deconvolution kernel.
Reviewer: W.Stute (Gießen)

MSC:

62G07 Density estimation
Full Text: DOI

References:

[1] Carroll, R. J.; Hall, P., Optimal rates of convergence for deconvolving a density, J. Amer. Statist. Assoc., 83, 1184-1186 (1988) · Zbl 0673.62033
[2] Collomb, G.; Härdle, W., Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations, Stochastic Process. Appl., 23, 77-89 (1986) · Zbl 0612.62127
[3] Fan, J., On the optimal rates of convergence for nonparametric deconvolution problems, Ann. Statist., 19, 1257-1272 (1991) · Zbl 0729.62033
[4] Fan, J., Asymptotic normality for deconvolving kernel density estimators, Sankhy \(a\) Ser. A, 53, 97-110 (1991) · Zbl 0729.62034
[5] Fan, J., Deconvolution with supersmooth distributions, Canad. J. Statist., 20 (1992), to appear · Zbl 0754.62020
[6] Fan, J.; Truong, Y., Nonparametric regression with errors-in-variables, Ann. Statist. (1992), to appear
[7] Fan, J.; Truong, Y.; Wang, Y., Measurement errors regression: A nonparametric approach, (Institute of Statistics Mimeo Series, No. 2040 (1990), University of North Carolina: University of North Carolina Chapel Hill)
[8] Hall, P.; Heyde, C. C., (Martingale Limit Theory and Its Applications (1980), Academic Press: Academic Press New York) · Zbl 0462.60045
[9] Härdle, W., (Applied Nonparametric Regression (1990), Cambridge Univ. Press: Cambridge Univ. Press Boston) · Zbl 0714.62030
[10] Kolmogorov, A. N.; Rozanov, Yu. A., On strong mixing conditions for stationary Gaussian processes, Theory Probab. Appl., 52, 204-207 (1960) · Zbl 0106.12005
[11] Liu, M. C.; Taylor, R., A consistent nonparametric density estimator for the deconvolution problem, Canad. J. Statist., 17, 399-410 (1989)
[12] Mack, Y. P.; Silverman, B. W., Weak and strong uniform consistency of kernel regression estimates, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 61, 405-415 (1982) · Zbl 0495.62046
[13] Masry, E., Multivariate probability density deconvolution for stationary random processes, IEEE Trans. Inform. Theory, 37, 1105-1115 (1991) · Zbl 0732.60045
[14] Masry, E., Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes, J. Multivariate Anal. (1991), to appear
[15] Masry, E., Strong consistency and rates for deconvolution of multivariate densities of stationary processes (1991), Submitted for publication
[16] Masry, E., Regression estimation with errors-in-variables for stationary processes (1991), Submitted for publication
[17] Nadaraya, E. A., On estimating regression, Theory Probab. Appl., 9, 141-142 (1964) · Zbl 0136.40902
[18] Prentice, R. L., Binary regression using an extended beta-binomial distribution, with discussion of correlation induced by covariate measurement errors, J. Amer. Statist. Assoc., 81, 321-327 (1986) · Zbl 0608.62086
[19] Robinson, P. M., Nonparametric estimators for time series, J. Time Series Anal., 4, 185-297 (1983) · Zbl 0544.62082
[20] Robinson, P. M., On the consistency and finite sample properties of nonparametric kernel time series regression, auto regression, and density estimators, Ann. Inst. Statist. Math., 38, 539-549 (1986) · Zbl 0612.62126
[21] Rosenblatt, M., A central limit theorem and strong mixing conditions, (Proc. Nat. Acad. Sci., 4 (1956)), 43-47 · Zbl 0070.13804
[22] Rosenblatt, M., Conditional probability density and regression estimates, (Krishnaiah, Multivariate Analysis II (1969)), 25-31
[23] Roussas, G. G., Nonparametric regression estimation under mixing conditions, Stochastic Process. Appl., 36, 107-116 (1990) · Zbl 0699.62038
[24] Roussas, G. G.; Tran, L. T., Asymptotic normality of the recursive kernel regression estimate under dependence conditions, Ann. Statist., 20, 98-121 (1991) · Zbl 0925.62171
[25] Stefanski, L.; Carroll, R. J., Deconvolving kernel density estimators, Statistics, 21, 169-184 (1991) · Zbl 0697.62035
[26] Truong, Y. K., Nonparametric curve estimation with time series errors, J. Statist. Plann. Inference, 28, 167-183 (1991) · Zbl 0734.62047
[27] Truong, Y. K.; Stone, C. J., Nonparametric function estimation involving time series, Ann. Statist., 20, 77-98 (1992) · Zbl 0764.62038
[28] Volkonskii, V. A.; Rozanov, Yu. A., Some limit theorems for random functions, Theory Probab. Appl., 4, 178-197 (1959) · Zbl 0092.33502
[29] Watson, G. S., Smooth regression analysis, Sankhy \(a\) Ser. A, 26, 359-372 (1964) · Zbl 0137.13002
[30] Whittemore, A. S.; Keller, J. B., Approximations for errors in variables regression, J. Amer. Statist. Assoc., 83, 1057-1066 (1988) · Zbl 0672.62078
[31] Zhang, C. H., Fourier methods for estimating mixing densities and distributions, Ann. Statist., 18, 806-830 (1990) · Zbl 0778.62037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.