×

Nonparametric regression estimation under mixing conditions. (English) Zbl 0699.62038

Summary: For \(j=1,2,...\), let \(\{Z_ j\}=\{(X_ j,Y_ j)\}\) be a strictly stationary sequence of random variables, where the X’s and the Y’s are \({\mathbb{R}}^ p\)-valued and \({\mathbb{R}}^ q\)-valued, respectively, for some integers p,q\(\geq 1\). Let \(\phi\) be an integrable Borel real-valued function defined on \({\mathbb{R}}^ q\) and set \[ r(x)={\mathcal E}[\phi (Y)| X=x],\quad x\in {\mathbb{R}}^ p. \] The function \(\phi\) need not be bounded. The quantity r(x) is estimated by \(r_ n(x)=R_ n(x)/\hat f_ n(x),\) where \(\hat f_ n(x)\) is a kernel estimate for the probability density function f of the X’s and \[ R_ n(x)=(nh^ p)^{- 1}\sum^{n}_{j=1}\phi (Y_ j)\cdot K((x-X_ j)/h). \] If the sequence \(\{Z_ j\}\) enjoys any one of the standard four kinds of mixing properties, then, under suitable additional assumptions, \(r_ n(x)\) is strongly consistent, uniformly over compacts. Rates of convergence are also specified.

MSC:

62G05 Nonparametric estimation
62J02 General nonlinear regression
62M05 Markov processes: estimation; hidden Markov models
62M09 Non-Markovian processes: estimation
Full Text: DOI

References:

[1] Bhattacharya, P. K., Estimation of probability density and its derivatives, Sankhyā Ser. A, 29, 373-382 (1967) · Zbl 0168.39703
[2] Collomb, G., Propriétés de convergence presque complète du prédicteur à noyau, Z. Wahrsch. Verw. Gebiete, 66, 441-460 (1984) · Zbl 0525.62046
[3] Collomb, G., Nonparametric time series analysis and prediction: uniform almost sure convergence of the window and \(k\)−N, N, autoregression estimates, Math. Oper. and Stat. Ser. Statistics, 16, 297-307 (1985) · Zbl 0585.62162
[4] Collomb, G.; Härdle, W., Strong uniform convergence rates in robust nonparametric time series analysis and prediction: kernel regression estimation from dependent observations, Stochastic Process. Appl., 23, 77-89 (1986) · Zbl 0612.62127
[5] Doob, J. L., Stochastic Processes (1953), Wiley: Wiley New York · Zbl 0053.26802
[6] Härdle, W., Robust regression function estimation, J. Multivariate Anal., 14, 169-180 (1984) · Zbl 0538.62029
[7] Härdle, W.; Luckhaus, S., Uniform consistency of a class of regression estimators, Ann. Statist., 12, 612-623 (1984) · Zbl 0544.62037
[8] Härdle, W.; Tuan, P.-D., Some theory on M-smoothing of time series, J. Time Series Anal., 7, 191-204 (1986) · Zbl 0607.62116
[9] Ibragimov, I. A.; Linnik, Yu. V., Independent and stationary sequences of random variables (1971), Wolters-Noordhoff: Wolters-Noordhoff Groningen, The Netherlands · Zbl 0219.60027
[10] Ioannides, D.; Roussas, G. G., Probability bounds for sums in triangular arrays of random variables under mixing conditions, (Matusita, K., Statistical Theory and Data Analysis, II (1988), North-Holland: North-Holland Amsterdam), 293-308 · Zbl 0737.62044
[11] Mack, Y. P.; Silverman, B. W., Weak and strong uniform consistency of kernel regression estimates, Z. Wahrsch. Verw. Gebiete, 61, 405-415 (1982) · Zbl 0495.62046
[12] Robinson, P. M., Nonparametric estimators for time series, J. Time Series Anal., 4, 185-207 (1983) · Zbl 0544.62082
[13] Robinson, P. M., Robust nonparametric autoregression, (Franke, J.; Härdle, W.; Martin, D., Lecture Notes in Statistics, Vol. 26 (1984), Springer: Springer Berlin) · Zbl 0573.62037
[14] Robinson, P. M., On the consistency and finite-sample properties of nonparametric kernel time series regression, autoregression and density estimators, Ann. Inst. Statist. Math., 38, 539-549 (1986), Part A · Zbl 0612.62126
[15] Roussas, G. G., Nonparametric estimation of the transition distribution function of a Markov process, Ann. Math. Statist., 40, 1386-1400 (1969) · Zbl 0188.50501
[16] Roussas, G. G., Nonparametric estimation in mixing sequences of random variables, J. Statist. Plann. Inference, 18, 135-149 (1987) · Zbl 0658.62048
[17] Roussas, G. G., Nonparametric regression estimation under mixing conditions, (Tech. Rept. No. 101 (1987), Division of Statistics, University of California: Division of Statistics, University of California Davis) · Zbl 0699.62038
[18] Roussas, G. G., A moment inequality of \(S_{n,k}_{n\) · Zbl 0738.60011
[19] Roussas, G. G.; Ioannides, D., Moment inequalities for mixing sequences of random variables, Stochastic Anal. Appl., 5, 1, 61-120 (1987) · Zbl 0619.60022
[20] Yakowitz, S., Nearest-neighbour methods for time series analysis, J. Time Series Anal., 8, 235-247 (1987) · Zbl 0615.62115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.