×

Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces. (English) Zbl 07565226

Summary: An evolving surface finite element discretisation is analysed for the evolution of a closed two-dimensional surface governed by a system coupling a generalised forced mean curvature flow and a reaction-diffusion process on the surface, inspired by a gradient flow of a coupled energy. Two algorithms are proposed, both based on a system coupling the diffusion equation to evolution equations for geometric quantities in the velocity law for the surface. One of the numerical methods is proved to be convergent in the \(H^1\) norm with optimal-order for finite elements of degree at least two. We present numerical experiments illustrating the convergence behaviour and demonstrating the qualitative properties of the flow: preservation of mean convexity, loss of convexity, weak maximum principles, and the occurrence of self-intersections.

MSC:

65-XX Numerical analysis
35R01 PDEs on manifolds
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Abels, H., Bürger, F., Garcke, H.: Qualitative properties for a system coupling scaled mean curvature flow and diffusion. arXiv:2205.02493, (2022)
[2] Abels, H., Bürger, F., Garcke, H.: Short time existence for coupling of scaled mean curvature flow and diffusion. arXiv:2204.07626, (2022)
[3] Akrivis, G.; Chen, M.; Yu, F.; Zhou, Z., The energy technique for the six-step BDF method, SIAM J. Math. Anal., 59, 2449-2472 (2021) · Zbl 1483.65153
[4] Alphonse, A.; Elliott, CM; Stinner, B., An abstract framework for parabolic PDEs on evolving spaces, Port. Math., 72, 1, 1-46 (2015) · Zbl 1323.35103 · doi:10.4171/PM/1955
[5] Akrivis, G.; Lubich, C., Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations, Numer. Math., 131, 4, 713-735 (2015) · Zbl 1334.65124 · doi:10.1007/s00211-015-0702-0
[6] Akrivis, G.; Li, B.; Lubich, C., Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations, Math. Comp., 86, 306, 1527-1552 (2017) · Zbl 1361.65053 · doi:10.1090/mcom/3228
[7] Bartels, S.; Carstensen, C.; Hecht, A., P2Q2Iso2D=2D isoparametric FEM in Matlab, J. Comput. Appl. Math., 192, 2, 219-250 (2006) · Zbl 1091.65112 · doi:10.1016/j.cam.2005.04.032
[8] Barrett, JW; Deckelnick, K.; Styles, V., Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve, SIAM J. Numer. Anal., 55, 2, 1080-1100 (2017) · Zbl 1365.65218 · doi:10.1137/16M1083682
[9] Barreira, R.; Elliott, CM; Madzvamuse, A., The surface finite element method for pattern formation on evolving biological surfaces, J. Math. Biol., 63, 6, 1095-1119 (2011) · Zbl 1234.92007 · doi:10.1007/s00285-011-0401-0
[10] Barrett, JW; Garcke, H.; Nürnberg, R., On the parametric finite element approximation of evolving hypersurfaces in \({\mathbb{R}}^3\), J. Comput. Phys., 227, 9, 4281-4307 (2008) · Zbl 1145.65068 · doi:10.1016/j.jcp.2007.11.023
[11] Barrett, JW; Garcke, H.; Nürnberg, R.; Bonito, Andrea; Nochetto, Ricardo H., Handb. Numer. Anal., Parametric finite element approximations of curvature driven interface evolutions, 275-423 (2020), Amsterdam: Elsevier, Amsterdam · Zbl 1455.35185
[12] Binz, T.; Kovács, B., A convergent finite element algorithm for generalized mean curvature flows of closed surfaces, IMA J. Numer. Anal. (2021) · Zbl 1522.65168 · doi:10.1093/imanum/drab043
[13] Binz, T., Kovács, B.: A convergent finite element algorithm for mean curvature flow in higher codimension. arXiv:2107.10577, (2021)
[14] Brenner, SC; Scott, R., The mathematical theory of finite element methods (2008), New York: Springer, New York · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[15] Bürger, F.: Interaction of mean curvature flow and diffusion. PhD thesis, University of Regensburg, Regensburg, Germany, doi:10.5283/epub.51215 (2021)
[16] Chaplain, MAJ; Ganesh, M.; Graham, IG, Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth, J. Math. Biol., 42, 5, 387-423 (2001) · Zbl 0988.92003 · doi:10.1007/s002850000067
[17] Deckelnick, K.; Dziuk, G.; Elliott, CM, Computation of geometric partial differential equations and mean curvature flow, Acta Numer, 14, 139-232 (2005) · Zbl 1113.65097 · doi:10.1017/S0962492904000224
[18] Dziuk, G.; Elliott, CM, Finite elements on evolving surfaces, IMA J. Numer. Anal., 27, 2, 262-292 (2007) · Zbl 1120.65102 · doi:10.1093/imanum/drl023
[19] Dziuk, G.; Elliott, CM, Finite element methods for surface PDEs, Acta Numer, 22, 289-396 (2013) · Zbl 1296.65156 · doi:10.1017/S0962492913000056
[20] Dziuk, G.; Elliott, CM, \(L^2\)-estimates for the evolving surface finite element method, Math. Comp., 82, 281, 1-24 (2013) · Zbl 1269.65087 · doi:10.1090/S0025-5718-2012-02601-9
[21] Demlow, A., Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal., 47, 2, 805-807 (2009) · Zbl 1195.65168 · doi:10.1137/070708135
[22] Dziuk, G.; Kröner, D.; Müller, T., Scalar conservation laws on moving hypersurfaces, Interfaces Free Bound., 15, 2, 203-236 (2013) · Zbl 1350.35115 · doi:10.4171/IFB/301
[23] Dziuk, G.; Lubich, C.; Mansour, DE, Runge-Kutta time discretization of parabolic differential equations on evolving surfaces, IMA J. Numer. Anal., 32, 2, 394-416 (2012) · Zbl 1247.65124 · doi:10.1093/imanum/drr017
[24] Deckelnick, K.; Styles, V., Finite element error analysis for a system coupling surface evolution to diffusion on the surface, Interfaces Free Bound., 24, 63-93 (2022) · Zbl 1486.65165 · doi:10.4171/IFB/467
[25] Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. Partial differential equations and calculus of variations, Lecture Notes in Math., 1357, Springer, Berlin, pages 142-155, (1988) · Zbl 0663.65114
[26] Dziuk, G., An algorithm for evolutionary surfaces, Numer. Math., 58, 1, 603-611 (1990) · Zbl 0714.65092 · doi:10.1007/BF01385643
[27] Ecker, K., Regularity Theory for Mean Curvature Flow (2004), Boston, MA: Birkhäuser Boston, Boston, MA · Zbl 1058.53054 · doi:10.1007/978-0-8176-8210-1
[28] Ecker, K., Heat equations in geometry and topology, Jahresber. Deutsch. Math.-Verein., 110, 3, 117-141 (2008) · Zbl 1151.53061
[29] Elliott, CM; Fritz, H., On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick, IMA J. Numer. Anal., 37, 2, 543-603 (2017) · Zbl 1433.65219
[30] Eyles, J.; King, JR; Styles, V., A tractable mathematical model for tissue growth, Interfaces Free Bound., 21, 4, 463-493 (2019) · Zbl 1442.35557 · doi:10.4171/IFB/428
[31] Elliott, CM; Ranner, T., A unified theory for continuous-in-time evolving finite element space approximations to partial differential equations in evolving domains, IMA J. Numer. Anal., 41, 1696-1845 (2021) · Zbl 07528292 · doi:10.1093/imanum/draa062
[32] Elliott, CM; Styles, V., An ALE ESFEM for solving PDEs on evolving surfaces, Milan J. Math., 80, 2, 469-501 (2012) · Zbl 1259.65147 · doi:10.1007/s00032-012-0195-6
[33] Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. In Calculus of variations and geometric evolution problems (Cetraro, 1996), volume 1713 of Lecture Notes in Math., pages 45-84. Springer, Berlin (1999) · Zbl 0942.35047
[34] Huisken, G., Flow by mean curvature of convex surfaces into spheres, J. Differential Geometry, 20, 1, 237-266 (1984) · Zbl 0556.53001 · doi:10.4310/jdg/1214438998
[35] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. (1996), Berlin: Springer, Berlin · Zbl 0859.65067
[36] Kovács, B., Li, B.: Maximal regularity of backward difference time discretization for evolving surface PDEs and its application to nonlinear problems. arXiv:2106.07951, (2021)
[37] Kovács, B.; Li, B.; Lubich, C., A convergent evolving finite element algorithm for mean curvature flow of closed surfaces, Numer. Math., 143, 797-853 (2019) · Zbl 1427.65250 · doi:10.1007/s00211-019-01074-2
[38] Kovács, B.; Li, B.; Lubich, C., A convergent algorithm for forced mean curvature flow driven by diffusion on the surfaces, Interfaces Free Bound., 22, 4, 443-464 (2020) · Zbl 1458.35016 · doi:10.4171/IFB/446
[39] Kovács, B.; Li, B.; Lubich, C., A convergent evolving finite element algorithm for Willmore flow of closed surfaces, Numer. Math., 149, 4, 595-643 (2021) · Zbl 1496.65165 · doi:10.1007/s00211-021-01238-z
[40] Kovács, B.; Li, B.; Lubich, C.; Power Guerra, CA, Convergence of finite elements on an evolving surface driven by diffusion on the surface, Numer. Math., 137, 3, 643-689 (2017) · Zbl 1377.65131 · doi:10.1007/s00211-017-0888-4
[41] Kovács, B., High-order evolving surface finite element method for parabolic problems on evolving surfaces, IMA J. Numer. Anal., 38, 1, 430-459 (2018) · Zbl 1406.65086 · doi:10.1093/imanum/drx013
[42] Kovács, B.; Power Guerra, CA, Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces, NMPDE, 32, 4, 1200-1231 (2016) · Zbl 1351.65065
[43] Li, B., Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements, SIAM J. Numer. Anal., 59, 3, 1592-1617 (2021) · Zbl 1479.65008 · doi:10.1137/20M136935X
[44] Lubich, C.; Mansour, DE; Venkataraman, C., Backward difference time discretization of parabolic differential equations on evolving surfaces, IMA J. Numer. Anal., 33, 4, 1365-1385 (2013) · Zbl 1401.65108 · doi:10.1093/imanum/drs044
[45] Nevanlinna, O.; Odeh, F., Multiplier techniques for linear multistep methods, Numer. Funct. Anal. Optim., 3, 4, 377-423 (1981) · Zbl 0469.65051 · doi:10.1080/01630568108816097
[46] Persson, P-O; Strang, G., A simple mesh generator in MATLAB, SIAM Rev., 46, 2, 329-345 (2004) · Zbl 1061.65134 · doi:10.1137/S0036144503429121
[47] Pozzi, P.; Stinner, B., Curve shortening flow coupled to lateral diffusion, Numer. Math., 135, 4, 1171-1205 (2017) · Zbl 1369.65111 · doi:10.1007/s00211-016-0828-8
[48] Pozzi, P.; Stinner, B., Elastic flow interacting with a lateral diffusion process: the one-dimensional graph case, IMA J. Numer. Anal., 39, 1, 201-234 (2019) · Zbl 1483.65158
[49] Styles, V.; Van Yperen, J., Numerical Analysis for a System Coupling Curve Evolution Attached Orthogonally to a Fixed Boundary, to a Reaction-diffusion Equation on the Curve (2021), PDE: Num. Meth, PDE · Zbl 1475.65134 · doi:10.1002/num.22861
[50] Walker, SW, The Shape of Things: A Practical Guide to Differential Geometry and the Shape Derivative (2015), Philadelphia: SIAM, Philadelphia · Zbl 1336.53001 · doi:10.1137/1.9781611973969
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.