Skip to main content
Log in

The surface finite element method for pattern formation on evolving biological surfaces

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this article we propose models and a numerical method for pattern formation on evolving curved surfaces. We formulate reaction-diffusion equations on evolving surfaces using the material transport formula, surface gradients and diffusive conservation laws. The evolution of the surface is defined by a material surface velocity. The numerical method is based on the evolving surface finite element method. The key idea is based on the approximation of Γ by a triangulated surface Γ h consisting of a union of triangles with vertices on Γ. A finite element space of functions is then defined by taking the continuous functions on Γ h which are linear affine on each simplex of the polygonal surface. To demonstrate the capability, flexibility, versatility and generality of our methodology we present results for uniform isotropic growth as well as anisotropic growth of the evolution surfaces and growth coupled to the solution of the reaction-diffusion system. The surface finite element method provides a robust numerical method for solving partial differential systems on continuously evolving domains and surfaces with numerous applications in developmental biology, tumour growth and cell movement and deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragón JL, Barrio RA, Varea C (1999) Turing patterns on a sphere. Phys Rev E 60: 4588–4592

    Article  Google Scholar 

  • Barreira R (2009) Numerical solution of non-linear partial differential equations on triangulated surfaces, D.Phil Thesis, University of Sussex

  • Barrett JW, Garcke H, Nürnberg (2008) Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J Sci Comput 31: 225–253

    Article  MathSciNet  MATH  Google Scholar 

  • Barrio RA, Maini PK, Padilla P, Plaza RG, Sánchez-Garduno F (2004) The effect of growth and curvature on pattern formation. J Dyn Diff Equ 4: 1093–1121

    Google Scholar 

  • Calhoun DA, Helzel C (2009) A finite volume method for solving parabolic equations on logically cartesian curved surface meshes. SIAM J Sci Comput 6: 4066–4099

    MathSciNet  Google Scholar 

  • Chaplain MAJ, Ganesh M, Graham IG (2001) Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J Math Biol 42: 387–423

    Article  MathSciNet  MATH  Google Scholar 

  • Crampin EJ, Gaffney EA, Maini PK (2002) Mode doubling and tripling in reation-diffusion patterns on growing domains: a piecewise linear model. J Math Biol 44: 107–128

    Article  MathSciNet  MATH  Google Scholar 

  • Crampin EJ, Gaffney EA, Maini PK (1999) Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull Math Biol 61: 1093–1120

    Article  Google Scholar 

  • Deckelnick KP, Dziuk G, Elliott CM (2005) Computation of Geometric PDEs and Mean Curvature Flow. Acta Numerica 14: 139–232

    Article  MathSciNet  MATH  Google Scholar 

  • Dziuk G (1988) Finite Elements for the Beltrami operator on arbitrary surfaces. Lecture Notes in Mathematics Partial differential equations and calculus of variations, vol 1357. Springer, Berlin, pp 142–155

  • Dziuk G, Elliott CM (2007) Finite elements on evolving surfaces. IMA J Num Anal 27: 262–292

    Article  MathSciNet  MATH  Google Scholar 

  • Dziuk G, Elliott CM (2007) Surface finite elements for parabolic equations. J Comp Math 25: 430–439

    MathSciNet  Google Scholar 

  • Dziuk G, Elliott CM (2010) An Eulerian approach to transport and diffusion on evolving surfaces. Comput Vis Sci 13: 17–28

    Article  MathSciNet  MATH  Google Scholar 

  • Dziuk G, Elliott CM (2010) L 2 estimates for the evolving surface finite element method. Math Comp (submitted)

  • Eilks C, Elliott CM (2008) Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method. J Comp Phys 227: 9727–9741

    Article  MathSciNet  MATH  Google Scholar 

  • Elliott CM, Stinner B (2010) Modeling and computation of two phase geometric biomembranes using surface finite elements. J Comp Phys 229: 6585–6612

    Article  MathSciNet  MATH  Google Scholar 

  • Elliott CM, Stinner B, Styles VM (2010) Numerical computation of advection and diffusion on evolving diffuse interfaces. IMA J Num Anal. Advance Access published on 11 May 2010. doi:10.1093/imanum/drq005

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12: 30–39

    Article  Google Scholar 

  • Golub GH, Van Loan CF (1996) Matrix Computations. JHU Press, Baltimore

    MATH  Google Scholar 

  • Greer J, Bertozzi AL, Sapiro G (2006) Fourth order partial differential equations on general geometries. J Comput Phys 216: 216–246

    Article  MathSciNet  MATH  Google Scholar 

  • Kondo S, Asai R (1995) A reaction-diffusion wave on the skin of the marine anglefish, Pomacanthus. Nature 376: 765–768

    Article  Google Scholar 

  • Lefevre J, Mangin J-F (2010) A reaction-diffusion model of the human brain development. PLoS Comput Biol 6: e1000749

    Article  MathSciNet  Google Scholar 

  • Madzvamuse A, Maini PK, Wathen AJ (2003) A moving grid finite element method applied to a model biological pattern generator. J Comp Phys 190: 478–500

    Article  MathSciNet  MATH  Google Scholar 

  • Madzvamuse A, Wathen AJ, Maini PK (2005) A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. J Sci Comp 24(2): 247–262

    Article  MathSciNet  MATH  Google Scholar 

  • Madzvamuse A (2006) Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains. J Comput Phys 216: 239–263

    Article  MathSciNet  Google Scholar 

  • Madzvamuse A, Maini P (2007) Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains. J Comput Phys 225: 100–119

    Article  MathSciNet  MATH  Google Scholar 

  • Madzvamuse A (2009) Turing instability conditions for growing domains with divergence free mesh velocity. Nonlinear Anal Theory Methods Appl 12: 2250–2257

    Google Scholar 

  • Madzvamuse A, Gaffney EA, Maini PK (2009) Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J Math Biol 61: 133–164

    Article  MathSciNet  Google Scholar 

  • Maini PK, Painter KJ, Chau HNP (1997) Spatial pattern formation in chemical and biological systems. Faraday Trans 93: 3601–3610

    Article  Google Scholar 

  • Murray JD (2002) Mathematical biology I and II, 3rd edn. Springer, Berlin

    Google Scholar 

  • Plaza RG, Sánchez-Garduño F, Padilla P, Barrio RA, Maini PK (2004) The effect of growth and curvature on pattern formation. J Dynam Diff Eqs 16(4): 1093–11214

    Article  MATH  Google Scholar 

  • Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative systems. II. J Chem Phys 48: 1695–1700

    Article  Google Scholar 

  • Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behaviour. J Theor Biol 81: 389–400

    Article  MathSciNet  Google Scholar 

  • Schmidt A, Siebert KG (2005) Design of adaptive finite element software: the finite element toolbox ALBERTA, vol 42. Lecture notes in computational science and engineering. Springer, Berlin

    Google Scholar 

  • Turing A (1952) The chemical basis of morphogenesis. Phil Trans R Soc Lond B 237: 37–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Madzvamuse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barreira, R., Elliott, C.M. & Madzvamuse, A. The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol. 63, 1095–1119 (2011). https://doi.org/10.1007/s00285-011-0401-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0401-0

Keywords

Mathematics Subject Classification (2000)

Navigation