×

A projection and contraction method with adaptive step sizes for solving bilevel pseudo-monotone variational inequality problems. (English) Zbl 07558497

Summary: In this paper, we propose a single projection method for finding a solution of the bilevel pseudo-monotone variational inequality problem in real Hilbert spaces. The advantage of the proposed algorithm requires only one projection onto the feasible set. Also, we prove strong convergence theorems of the proposed method under mild conditions, which improve some related results in the literature. Finally, we present some numerical experiments to show the efficiency and advantages of the proposed algorithm.

MSC:

47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47J20 Variational and other types of inequalities involving nonlinear operators (general)
47J05 Equations involving nonlinear operators (general)
47J25 Iterative procedures involving nonlinear operators
Full Text: DOI

References:

[1] Anh, PK; Thong, DV; Vinh, NT., Improved inertial extragradient methods for solving pseudo-monotone variational inequalities, Optimization (2020) · Zbl 1492.65180 · doi:10.1080/02331934.2020.1808644
[2] Dong, QL; Cho, YJ; Rassias, TM., The projection and contraction methods for finding common solutions to variational inequality problems, Optim Lett, 12, 1871-1896 (2018) · Zbl 1422.49010
[3] Dong, QL; Cho, YJ; Zhong, LL, Inertial projection and contraction algorithms for variational inequalities, J Global Optim, 70, 687-704 (2018) · Zbl 1390.90568
[4] Khanh, PQ; Thong, DV; Vinh, NT., Versions of the subgradient extragradient method for pseudomonotone variational inequalities, Acta Appl Math, 170, 319-345 (2020) · Zbl 07344877 · doi:10.1007/s10440-020-00335-9
[5] Reich, S.; Thong, DV; Dong, Q., New algorithms and convergence theorems for solving variational inequalities with non-Lipschitz mappings, Numer Algorithms (2020) · Zbl 1465.65054 · doi:10.1007/s11075-020-00977-8
[6] He, BS; Liao, LZ., Improvements of some projection methods for monotone nonlinear variational inequalities, J Optim Theory Appl, 112, 111-128 (2002) · Zbl 1025.65036
[7] Korpelevich, GM., The extragradient method for finding saddle points and other problems, Ekonom Mate Metod, 12, 747-756 (1976) · Zbl 0342.90044
[8] Antipin, AS., On a method for convex programs using a symmetrical modification of the Lagrange function, Ekonom I Mate Metod, 12, 1164-1173 (1976) · Zbl 0368.90115
[9] Censor, Y.; Gibali, A.; Reich, S., Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space, Optimization, 61, 1119-1132 (2011) · Zbl 1260.65056
[10] Censor, Y.; Gibali, A.; Reich, S., Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim Meth Softw, 26, 827-845 (2011) · Zbl 1232.58008
[11] Censor, Y.; Gibali, A.; Reich, S., The subgradient extragradientmethod for solving variational inequalities in Hilbert space, J Optim Theory Appl, 148, 318-335 (2011) · Zbl 1229.58018
[12] Facchinei, F.; Pang, JS., Finite-dimensional variational inequalities and complementarity problems (2003), New York: Springer, New York · Zbl 1062.90001
[13] Kraikaew, R.; Saejung, S., Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J Optim Theory Appl, 163, 399-412 (2014) · Zbl 1305.49012
[14] Thong, DV; Hieu, DV., Weak and strong convergence theorems for variational inequality problems, Numer Algorithms, 78, 1045-1060 (2017) · Zbl 1398.65376
[15] Thong, DV; Li, X.; Dong, Q., An inertial Popov’s method for solving pseudomonotone variational inequalities, Optim Lett (2020) · Zbl 1473.49003 · doi:10.1007/s11590-020-01599-8
[16] Thong, DV; Shehu, Y.; Iyiola, OS, New hybrid projection methods for variational inequalities involving pseudomonotone mappings, Optim Eng (2020) · Zbl 1481.47085 · doi:10.1007/s11081-020-09518-7
[17] Thong, DV; Shehu, Y.; Iyiola, OS., A new iterative method for solving pseudomonotone variational inequalities with non-Lipschitz operators, Comp Appl Math, 39, 108 (2020) · Zbl 1449.47115 · doi:10.1007/s40314-020-1136-6
[18] Tseng, P., A modified forward-backward splitting method for maximal monotone mappings, SIAM J Control Optim, 38, 431-446 (2000) · Zbl 0997.90062
[19] Vuong, PT., On the weak convergence of the extragradient method for solving pseudomonotone variational inequalities, J Optim Theory Appl, 176, 399-409 (2018) · Zbl 1442.47052
[20] Yang, J.; Liu, H., Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer Algorithms, 80, 741-752 (2019) · Zbl 1493.47107
[21] He, BS., A class of projection and contraction methods for monotone variational inequalities, Appl Math Optim, 35, 69-76 (1997) · Zbl 0865.90119
[22] Sun, DF., A class of iterative methods for solving nonlinear projection equations, J Optim Theory Appl, 91, 123-140 (1996) · Zbl 0871.90091
[23] Cai, X.; Gu, G.; He, B., On the \(####\) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators, Comput Optim Appl, 57, 339-363 (2014) · Zbl 1304.90203
[24] Luo, ZQ; Pang, JS; Ralph, D., Mathematical programs with equilibrium constraints (1996), Cambridge: Cambridge University Press, Cambridge
[25] Solodov, MV., An explicit descent method for bilevel convex optimization, J Convex Anal, 14, 227-237 (2007) · Zbl 1145.90081
[26] Daniele, P.; Giannessi, F.; Maugeri, A., Equilibrium problems and variational models (2003), Dordrecht: Kluwer Academic, Dordrecht
[27] Giannessi, F.; Maugeri, A.; Pardalos, PM., Equilibrium problems: nonsmooth optimization and variational inequality models (2004), Dordrecht: Kluwer Academic, Dordrecht
[28] Konnov, IV., Combined relaxation methods for variational inequalities (2001), Berlin: Springer, Berlin · Zbl 0982.49009
[29] Yao, Y.; Marino, G.; Muglia, L., A modified Korpelevich’s method convergent to the minimum-norm solution of a variational inequality, Optimization, 63, 559-569 (2014) · Zbl 1524.47105
[30] Zegeye, H.; Shahzad, N.; Yao, Y., Minimum-norm solution of variational inequality and fixed point problem in Banach spaces, Optimization, 64, 453-471 (2015) · Zbl 1312.47088
[31] Trujillo, CR; Zlobec, S., Bilevel convex programming models, Optimization, 58, 1009-1028 (2009) · Zbl 1175.90313
[32] Glackin, J.; Ecker, JG; Kupferschmid, M., Solving bilevel linear programs using multiple objective linear programming, J Optim Theory Appl, 140, 197-212 (2009) · Zbl 1163.90020
[33] Dempe, S., Foundations of bilevel programming (2002), Dordrecht: Kluwer Academic Publishers · Zbl 1038.90097
[34] Dempe, S.; Kalashnikov, V.; Prez-Valdés, GA, Bilevel programming problems: theory algorithms and applications to energy networks (2015), Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg · Zbl 1338.90005
[35] Dinh, BV; Muu, LD., Algorithms for a class of bilevel programs involving pseudomonotone variational inequalities, Acta Math Vietnam, 38, 529-540 (2013) · Zbl 1306.49053
[36] Dinh, BV; Hung, PG; Muu, LD., Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems, Numer Funct Anal Optim, 35, 539-563 (2014) · Zbl 1290.49015
[37] Dinh, BV; Muu, LD., A projection algorithm for solving pseudomonotone equilibrium problems and its application to a class of bilevel equilibria, Optimization, 64, 559-575 (2015) · Zbl 1317.65152
[38] Kalashnikov, VV; Klashnikova, NI., Solving two-level variational inequality, J Glob Optim, 8, 289-294 (1996) · Zbl 0859.90114
[39] Moudafi, A., Proximal methods for a class of bilevel monotone equilibrium problems, J Glob Optim, 47, 287-292 (2010) · Zbl 1190.90125
[40] Thong, DV; Triet, NA; Li, X. et al., Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems, Numer Algorithms, 83, 1123-1143 (2020) · Zbl 1444.47073
[41] Thong, DV; Hieu, DV., A strong convergence of modified subgradient extragradient method for solving bilevel pseudomonotone variational inequality problems, Optimization, 69, 1313-1334 (2020) · Zbl 07201649
[42] Goebel, K.; Reich, S., Uniform convexity, hyperbolic geometry, and nonexpansive mappings (1984), New York: Marcel Dekker, New York · Zbl 0537.46001
[43] Cegielski, A., Iterative methods for fixed point problems in Hilbert spaces (2012), Berlin: Springer, Berlin · Zbl 1256.47043
[44] Muu, LD; Quy, NV., On existence and solution methods for strongly pseudomonotone equilibrium problems, Vietnam J Math, 43, 229-238 (2015) · Zbl 1317.47058
[45] Cottle, RW; Yao, JC., Pseudo-monotone complementarity problems in Hilbert space, J Optim Theory Appl, 75, 281-295 (1992) · Zbl 0795.90071
[46] Yamada, I. The hybrid steepest descent method for the variational inequality problem of the intersection of fixed point sets of nonexpansive mappings. In: Butnariu D, Censor Y, Reich S, editors. Inherently parallel algorithm for feasibility and optimization. Amsterdam: Elsevier; 2001. p. 473-504. · Zbl 1013.49005
[47] Saejung, S.; Yotkaew, P., Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal, 75, 742-750 (2012) · Zbl 1402.49011
[48] Denisov, SV; Semenov, VV; Chabak, LM., Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern Syst Anal, 51, 757-765 (2015) · Zbl 1331.49010
[49] Anh, PN; Kim, JK; Muu, LD., An extragradient algorithm for solving bilevel pseudomonotone variational inequalities, J Glob Optim, 52, 627-639 (2012) · Zbl 1246.65098
[50] Gibali, A.; Shehu, Y., An efficient iterative method for finding common fixed point and variational inequalities in Hilbert spaces, Optimization, 68, 13-32 (2019) · Zbl 07007063
[51] Malitsky, YV., Projected reflected gradient methods for monotone variational inequalities, SIAM J Optim, 25, 502-520 (2015) · Zbl 1314.47099
[52] Shehu, Y.; Dong, QL; Jiang, D., Single projection method for pseudo-monotone variational inequality in Hilbert spaces, Optimization, 68, 385-409 (2019) · Zbl 1431.49009
[53] Harker, PT; Pang, JS., A damped-Newton method for the linear complementarity problem, Lectures Appl Math, 26, 265-284 (1990) · Zbl 0699.65054
[54] Solodov, MV; Svaiter, BF., A new projection method for variational inequality problems, SIAM J Control Optim, 37, 765-776 (1999) · Zbl 0959.49007
[55] Hu, X.; Wang, J., Solving pseudo-monotone variational inequalities and pseudo-convex optimization problems using the projection neural network, IEEE Trans Neural Netw, 17, 1487-1499 (2006)
[56] Bot, RI; Csetnek, ER; Vuong, PT., The forward-backward-forward method from discrete and continuous perspective for pseudo-monotone variational inequalities in Hilbert spaces, Eur J Oper Res, 287, 49-60 (2020) · Zbl 1443.90268
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.