×

A one-dimensional birth and death process in random environment. (English) Zbl 0675.60072

Let \(\{\) X(t), \(t\leq 0\}\) be a birth-death process in a random environment \(\{\lambda_ n,\eta_ n\}\), where \(\{\lambda_ n\), \(n\in Z\}\) and \(\{\eta_ n\), \(n\in Z\}\) are two sequences of i.i.d. positive r.v.’s, and \(\{\lambda_ n\}\) and \(\{\eta_ n\}\) are independent. The author proves that the process \(\{\) X(g(n)h(n)t)/n\(\}\) converges weakly to \(\{X_*(t)\), \(t\geq 0\}\) in the \(J_ 1\)-topology in the set of all cadlag functions on R in several general cases of \(\lambda\) ’s and \(\eta\) ’s.
Notations in the above statement are explained as following:
g(n) and h(n): convergence rate functions concerning \(\lambda\) and \(\eta\) \(respectively.\)
X\({}_*(t):=S_*^{-1}(B(V_*^{-1}(t))).\)
B(t): Brownian motion independent of \(M_*(x)\) and \(S_*(x).\)
M\({}_*(x)\) and \(S_*(x):\) limit functions of \(g(n)^{- 1}\sum^{[nx]}\lambda_ k^{-1}\) and \(h(n)^{-1}\sum^{[nx]}\eta_ k\) in sense of a.e. or d, determined by the various cases, \(respectively.\)
V\({}_*(t):=\int L(t,S_*(x))dM_*(x).\)
L(t,x): local time of B(t) at point x and \(t>0\).
Reviewer: Yubo Ge

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
92D25 Population dynamics (general)
60J65 Brownian motion
Full Text: DOI

References:

[1] S. Alexander, J. Bernasconi, W. R. Schneider and R. Orbach, Excitation dynamics in random one-dimensional system. Rev. Modern Phys.,53 (1981), 175–198. · Zbl 0465.76083 · doi:10.1103/RevModPhys.53.175
[2] V. V. Anshelevich, K. M. Khanin and Ya. G. Sinai, Symmetric random walks in random environments. Comm. Math. Phys.,85 (1982), 449–470. · Zbl 0512.60058 · doi:10.1007/BF01208724
[3] J. Bernasconi and W. R. Schneider, Diffusion in random one-dimensional systems. J. Statist. Phys.,30 (1983), 355–362. · doi:10.1007/BF01012309
[4] P. Billingsley, Convergence of Probability Measure. John Wiley & Sons. New York, 1968.
[5] R. M. Dudley, Distance of probability measures and random variables. Ann. Math. Statist.,39 (1968), 1563–1572. · Zbl 0169.20602 · doi:10.1214/aoms/1177698137
[6] A. O. Golosov and I. S. Sineva, Limit behavior of random walk in non-symmetric random environments. Preprint. · Zbl 0797.60057
[7] K. Itô and H. P. McKean, Jr., Diffusion Processes and Their Sample Paths. 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1974.
[8] S. Karlin and H. M. Taylor, A First Course in Stochastic Processes. 2nd ed., Academic Press, New York, 1975. · Zbl 0315.60016
[9] K. Kawazu and H. Kesten, On birth and death processes in symmetric random environment. J. Statist. Phys.,37 (1984), 561–576. · Zbl 0587.60088 · doi:10.1007/BF01010495
[10] J. Machta, Renormalization group approach to random walks on disordered lattices. J. Statist. Phys.,30 (1983), 305–314. · doi:10.1007/BF01012305
[11] M. Tomisaki, On the equivalence ofd T andd T in Ogura’s private note ”Convergence of diffusion processes”. Private manuscript, 1983 (Japanese).
[12] A. V. Skorohod, Limit theorems for stochastic processes. Theory Probab. Appl.,1 (1956), 262–290 (English transl.).
[13] C. J. Stone, Limit theorems for random walks, birth and death processes and diffusion processes. Ill. J. Math.,7 (1963), 638–660. · Zbl 0118.13202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.