×

Unified prescription for the generation of electroweak and gravitational gauge field Lagrangian on a principal fiber bundle. (English) Zbl 0721.58059

Summary: It is essentially known that useful gauge field Lagrangians arise as Weil polynomials of the curvature of the gauge connection. The deeper implications and details of this fact are worked out in two widely differing cases. The Glashow-Weinberg-Salam gauge field Lagrangian for electroweak theory and the Townsend-Zardecki action for gravitation are obtained from the same type of “Yang-Mills” Weil form on a principal fiber bundle over space-time, with symmetry group U(2) and SO(2,3), respectively. The unified geometrical approach given here shows that fiber bundle reduction and symmetry breaking are essential not only in electroweak theory but also in the SO(2,3) gauge theory for gravitation. In fact, the process of symmetry breaking in electroweak theory and the soldering of the anti-de Sitter bundle, essential in the interpretation of SO(2,3) gauge theory as a theory for gravitation, are corresponding geometrical concepts.

MSC:

58Z05 Applications of global analysis to the sciences
81T13 Yang-Mills and other gauge theories in quantum field theory
81R40 Symmetry breaking in quantum theory

References:

[1] DOI: 10.1016/0034-4877(70)90003-0 · Zbl 0204.29802 · doi:10.1016/0034-4877(70)90003-0
[2] DOI: 10.1143/PTP.80.330 · doi:10.1143/PTP.80.330
[3] DOI: 10.1143/PTP.80.1109 · doi:10.1143/PTP.80.1109
[4] DOI: 10.1143/PTP.80.1109 · doi:10.1143/PTP.80.1109
[5] DOI: 10.1143/PTP.80.1109 · doi:10.1143/PTP.80.1109
[6] DOI: 10.1063/1.1665613 · Zbl 0213.48801 · doi:10.1063/1.1665613
[7] DOI: 10.1063/1.528197 · Zbl 0651.53062 · doi:10.1063/1.528197
[8] DOI: 10.1063/1.528197 · Zbl 0651.53062 · doi:10.1063/1.528197
[9] DOI: 10.1007/BF01603811 · doi:10.1007/BF01603811
[10] DOI: 10.1063/1.525910 · Zbl 0514.58022 · doi:10.1063/1.525910
[11] DOI: 10.1063/1.525181 · Zbl 0481.55015 · doi:10.1063/1.525181
[12] DOI: 10.1063/1.527680 · Zbl 0635.55015 · doi:10.1063/1.527680
[13] DOI: 10.1063/1.523429 · Zbl 0354.53028 · doi:10.1063/1.523429
[14] DOI: 10.1016/0003-4916(63)90335-X · Zbl 0114.21104 · doi:10.1016/0003-4916(63)90335-X
[15] DOI: 10.1103/RevModPhys.61.1 · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[16] DOI: 10.1103/PhysRevD.14.384 · doi:10.1103/PhysRevD.14.384
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.