×

Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities. (English) Zbl 0707.05006

The author applies the theory of Hall-Littlewood functions to prove several multiple basic hypergeometric series identities, including some known generalizations of the Rogers-Ramanujan identities. The technique involves the partial fraction expansion of certain symmetric formal power series. The method also gives Proctor’s plane partition identities.
Reviewer: L.A.Székely

MSC:

05A19 Combinatorial identities, bijective combinatorics
05A17 Combinatorial aspects of partitions of integers
05A30 \(q\)-calculus and related topics
33C99 Hypergeometric functions
11P81 Elementary theory of partitions
Full Text: DOI

References:

[1] George E. Andrews, Partition theorems related to the Rogers-Ramanujan identities, J. Combinatorial Theory 2 (1967), 422 – 430. · Zbl 0153.02101
[2] George E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4082 – 4085. · Zbl 0289.10010
[3] George E. Andrews, On the general Rogers-Ramanujan theorem, American Mathematical Society, Providence, R.I., 1974. Memiors of the American Mathematical Society, No. 152. · Zbl 0296.10010
[4] George E. Andrews, Problems and prospects for basic hypergeometric functions, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Academic Press, New York, 1975, pp. 191 – 224. Math. Res. Center, Univ. Wisconsin, Publ. No. 35. · Zbl 0342.33001
[5] George E. Andrews, The theory of partitions, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2. · Zbl 0371.10001
[6] George E. Andrews, Partitions and Durfee dissection, Amer. J. Math. 101 (1979), no. 3, 735 – 742. · Zbl 0409.10006 · doi:10.2307/2373804
[7] George E. Andrews, Plane partitions. I. The MacMahon conjecture, Studies in foundations and combinatorics, Adv. in Math. Suppl. Stud., vol. 1, Academic Press, New York-London, 1978, pp. 131 – 150. George E. Andrews, Plane partitions. II. The equivalence of the Bender-Knuth and MacMahon conjectures, Pacific J. Math. 72 (1977), no. 2, 283 – 291.
[8] George E. Andrews, Plane partitions. I. The MacMahon conjecture, Studies in foundations and combinatorics, Adv. in Math. Suppl. Stud., vol. 1, Academic Press, New York-London, 1978, pp. 131 – 150. George E. Andrews, Plane partitions. II. The equivalence of the Bender-Knuth and MacMahon conjectures, Pacific J. Math. 72 (1977), no. 2, 283 – 291.
[9] -, \( q\)-series: their development and application in analysis, combinatorics, physics, and computer algebra, CBMS Regional Conf. Ser. in Math., no. 66, Amer. Math. Soc., Providence, R.I., 1986. · Zbl 0594.33001
[10] David M. Bressoud, A generalization of the Rogers-Ramanujan identities for all moduli, J. Combin. Theory Ser. A 27 (1979), no. 1, 64 – 68. · Zbl 0416.10009 · doi:10.1016/0097-3165(79)90008-6
[11] David M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54. · Zbl 0422.10007 · doi:10.1090/memo/0227
[12] -, Lattice paths and the Rogers-Ramanujan identities, Pennsylvania State Univ. preprint. · Zbl 0681.10011
[13] Corrado De Concini, Symplectic standard tableaux, Adv. in Math. 34 (1979), no. 1, 1 – 27. · Zbl 0424.14018 · doi:10.1016/0001-8708(79)90061-6
[14] Basil Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961), 393 – 399. · Zbl 0100.27303 · doi:10.2307/2372962
[15] Basil Gordon, A proof of the Bender-Knuth conjecture, Pacific J. Math. 108 (1983), no. 1, 99 – 113. · Zbl 0533.05005
[16] I. P. Goulden, Exact values for degree sums over strips of Young diagrams, Canad. J. Math. 42 (1990), no. 5, 763 – 775. · Zbl 0723.05118 · doi:10.4153/CJM-1990-040-4
[17] I. G. Macdonald, Symmetric functions and Hall polynomials, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. · Zbl 0487.20007
[18] Robert A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin. 5 (1984), no. 4, 331 – 350. · Zbl 0562.05003 · doi:10.1016/S0195-6698(84)80037-2
[19] Robert A. Proctor, New symmetric plane partition identities from invariant theory work of De Concini and Procesi, European J. Combin. 11 (1990), no. 3, 289 – 300. · Zbl 0726.05008 · doi:10.1016/S0195-6698(13)80128-X
[20] Bruce E. Sagan and Richard P. Stanley, Robinson-Schensted algorithms for skew tableaux, J. Combin. Theory Ser. A 55 (1990), no. 2, 161 – 193. · Zbl 0732.05061 · doi:10.1016/0097-3165(90)90066-6
[21] L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147 – 167. · Zbl 0046.27204 · doi:10.1112/plms/s2-54.2.147
[22] Richard P. Stanley, Symmetries of plane partitions, J. Combin. Theory Ser. A 43 (1986), no. 1, 103 – 113. , https://doi.org/10.1016/0097-3165(86)90028-2 Richard P. Stanley, Erratum: ”Symmetries of plane partitions”, J. Combin. Theory Ser. A 44 (1987), no. 2, 310. · Zbl 0602.05007 · doi:10.1016/0097-3165(87)90038-0
[23] Dennis Stanton and Doron Zeilberger, The Odlyzko conjecture and O’Hara’s unimodality proof, Proc. Amer. Math. Soc. 107 (1989), no. 1, 39 – 42. · Zbl 0693.05008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.