×

Symmetries of plane partitions. (English) Zbl 0602.05007

J. Comb. Theory, Ser. A 43, 103-113 (1986); erratum ibid. 44, 310 (1987).
Author’s summary: ”We introduce a new symmetry operation, called complementation, on plane partitions whose three-dimensional diagram is contained in a given box. This operation was suggested by work of W. H. Mills, D. P. Robbins ad H. Rumsey jun. [J. Comb. Theory, Ser. A 34, 340–359 (1983; Zbl 0516.05016)]. There then arise a total of ten inequivalent problems concerned with the enumeration of plane partitions with a given symmetry. Four of these problems had been previously considered. We survey what is known about the problems and give a solution to one of them. The proof is based on the theory of Schur functions, in particular the Littlewood-Richardson rule. Of the ten problems, seven are now solved while the remaining three have conjectured simple solutions.”
[The erratum contains a corrected version of Theorem 3.4 after F. Brenti has pointed out that parts (b) and (c) of that Theorem are stated incorrectly in the paper (p. 111).]

MSC:

05A17 Combinatorial aspects of partitions of integers
05A15 Exact enumeration problems, generating functions

Citations:

Zbl 0516.05016
Full Text: DOI

References:

[1] Andrews, G. E., Plane partitions (II): The equivalence of the Bender-Knuth and MacMahon conjectures, Pacific J. Math., 72, 283-291 (1977) · Zbl 0376.10014
[2] Andrews, G. E., Plane partitions (I): The MacMahon conjecture, Adv. in Math. Suppl. Stud., 1, 131-150 (1978) · Zbl 0462.10010
[3] Andrews, G. E., Macdonald’s conjecture and descending plane partitions, (Narayana, T. V.; Mathsen, R. M.; Williams, J. G., Combinatorics, Representation Theory, and Statistical Methods in Groups (1980), Dekker: Dekker New York/Basel), 91-106 · Zbl 0441.05005
[4] Andrews, G. E., Totally symmetric plane partitions, Abstracts Amer. Math. Soc., 1, 415 (1980)
[5] Bender, E. A.; Knuth, D. E., Enumeration of plane partitions, J. Combin. Theory Ser. A, 13, 40-54 (1972) · Zbl 0246.05010
[6] Gordon, B., A proof of the Bender-Knuth conjecture, Pacific J. Math., 108, 99-113 (1983) · Zbl 0533.05005
[7] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1979), Oxford Univ. Press: Oxford Univ. Press London/New York · Zbl 0487.20007
[8] MacMahon, P. A., Partitions of numbers whose graphs possess symmetry, Trans. Cambridge Philos. Soc., 17, 149-170 (1899) · JFM 30.0201.04
[9] MacMahon, P. A., (Combinatory Analysis, Vols. I, II (1916), Cambridge Univ. Press: Cambridge Univ. Press London/New York), reprinted by Chelsea, New York, 1960 · JFM 46.0118.07
[10] Mills, W. H.; Robbins, D. P.; Rumsey, H., Proof of the Macdonald conjecture, Invent. Math., 66, 73-87 (1982) · Zbl 0465.05006
[11] Mills, W. H.; Robbins, D. P.; Rumsey, H., Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A, 34, 340-359 (1983) · Zbl 0516.05016
[12] Proctor, R. A., Shifted plane partitions of trapezoidal shape, (Proc. Amer. Math. Soc., 89 (1983)), 553-559 · Zbl 0525.05007
[13] Proctor, R. A., Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin., 5, 331-350 (1984) · Zbl 0562.05003
[14] R. A. Proctor; R. A. Proctor
[15] Stanley, R. P., Theory and application of plane partitions, Parts 1 and 2, Stud. Appl. Math., 50, 259-279 (1971) · Zbl 0225.05012
[16] Stanley, R. P., Some combinatorial aspects of the Schubert calculus, (Foata, D., Combinatoire et Représentation du Groupe Symétrique. Combinatoire et Représentation du Groupe Symétrique, Lecture Notes in Math., Vol. 579 (1977), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 217-251 · Zbl 0359.05006
[17] Stanley, R. P., On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5, 359-372 (1984) · Zbl 0587.20002
[18] W. H. Mills, D. P. Robbins, and H. Rumsey, Jr.; W. H. Mills, D. P. Robbins, and H. Rumsey, Jr. · Zbl 0656.05006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.