×

Recurrent iterated function systems. (English) Zbl 0659.60045

Recurrent iterated function systems generalize iterated function systems as introduced by the first author and S. Demko [Proc. R. Soc. Lond., Ser. A 399, 243-275 (1985; Zbl 0588.28002)] in that a Markov chain (typically with some zeros in the transition probability matrix) is used to drive a system of maps \(w_ j:\) \(K\to K\), \(j=1,2,...,N\), where K is a complete metric space. It is proved that under “average contractivity”, a convergence and ergodic theorem obtains, which extends the results of the first two authors [Adv. Appl. Probab. 20, No.1, 14-32 (1988; Zbl 0643.60050)]. It is also proved that a Collage Theorem is true, which generalizes the main result of the first and third authors, V. Ervin and J. Lancaster [Proc. Natl. Acad. Sci. USA 83, 1975-1977 (1986; Zbl 0613.28008)] and which broadens the class of images which can be encoded using iterated map techniques. The theory of fractal interpolation functions of the first author [Constructive Approximation 2, 303-329 (1986; Zbl 0606.41005)] is extended, and the fractal dimensions for certain attractors is derived, extending the technique of D. P. Hardin and P. Massopust [Commun. Math. Phys. 105, 455- 460 (1986; Zbl 0605.28006)]. Applications to Julia set theory and to the study of the boundary of IFS attractors are presented.

MSC:

60F05 Central limit and other weak theorems
37A99 Ergodic theory
60G10 Stationary stochastic processes
60J05 Discrete-time Markov processes on general state spaces
28D99 Measure-theoretic ergodic theory
41A99 Approximations and expansions
Full Text: DOI

References:

[1] M. F. Barnsley (1986):Fractal functions and interpolation. Constr. Approx.,2:303–329. · Zbl 0606.41005 · doi:10.1007/BF01893434
[2] M. F. Barnsley, S. Demko (1985):Iterated function systems and the global construction of fractals. Proc. Roy. Soc. London Ser. A,399:243–275. · Zbl 0588.28002 · doi:10.1098/rspa.1985.0057
[3] M. F. Barnsley, J. Elton (1988):A new class of Markov processes for image encoding. Adv. in Appl. Probab.,20:14–32. · Zbl 0643.60050 · doi:10.2307/1427268
[4] M. F. Barnsley, V. Ervin, D. P. Hardin, J. Lancaster (1986):Solution of an inverse problem for fractals and other sets. Proc. Nat. Acad. Sci. U.S.A.,83:1975–1977. · Zbl 0613.28008 · doi:10.1073/pnas.83.7.1975
[5] M. F.Barnsley, J.Elton, D.Hardin, P.Massopust (preprint): Hidden Variable Fractal Interpolation Functions. · Zbl 0704.26009
[6] M. F. Barnsley, J. S. Geronimo, A. N. Harrington (1984):Geometry and combinatorics of Julia sets of real quadratic maps. J. Statist. Phys.,37:51–92. · Zbl 0588.58054 · doi:10.1007/BF01012905
[7] M. F.Barnsley, A. D.Sloan (1986) (preprint):Image compression.
[8] T.Bedford Dimension and dynamics for fractal recurrent sets.
[9] M.Berger, Y.Amit (preprint):Products of random affine maps.
[10] F. M.Dekking (1982): Recurrent Sets: A Fractal Formalism. Delft University of Technology. · Zbl 0495.51017
[11] J. Dugundji (1966): Topology. Boston: Allyn and Bacon, p. 253.
[12] J. Elton (1987):An ergodic theorem for iterated maps. Ergodic Theory Dynamical Systems,7:481–488. · Zbl 0621.60039
[13] W. Feller (1957): An Introduction to Probability Theory and Its Applications. London: Wiley. · Zbl 0077.12201
[14] J. Hutchinson (1981):Fractals and self-similarity. Indiana Univ. Math. J.,30:731–747. · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[15] D. P. Hardin, P. Massopust (1986):Dynamical systems arising from iterated function systems. Comm. Math. Phys.,105:455–460. · Zbl 0605.28006 · doi:10.1007/BF01205937
[16] U. Krengel (1985): Ergodic Theorems, New York: de Gruyter.
[17] T. Li, J. A. Yorke (1975):Period three implies chaos. Amer. Math. Monthly,82:985–992. · Zbl 0351.92021 · doi:10.2307/2318254
[18] E. Seneta (1973): Non-negative Matrices. New York: Wiley. · Zbl 0278.15011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.