×

Geometry and combinatorics of Julia sets of real quadratic maps. (English) Zbl 0588.58054

For real \(\lambda\) a correspondence is made between the Julia set \(B_{\lambda}\) for \(z\to (z-\lambda)^ 2\), in the hyperbolic case, and the set of \(\lambda\)-chains \(\{\lambda \pm \sqrt{(\lambda \pm \sqrt{(\lambda \pm...}}\},\) with the aid of Cremer’s theorem. It is shown how a number of features of \(B_{\lambda}\) can be understood in terms of \(\lambda\)-chains. The structure of \(B_{\lambda}\) is determined by certain equivalence classes of \(\lambda\)-chains, fixed by orders of visitation of certain real cycles; and the bifurcation history of a given cycle can be conveniently computed via the combinatorics of \(\lambda\)- chains. The functional equations obeyed by attractive cycles are investigated, and their relation to \(\lambda\)-chains is given. The first cascade of period-doubling bifurcations is described from the point of view of the associated Julia sets and \(\lambda\)-chains. Certain ”Julian sets” associated with the Feigenbaum function and some theorems of Lanford are discussed.

MSC:

37G99 Local and nonlocal bifurcation theory for dynamical systems
26A18 Iteration of real functions in one variable
Full Text: DOI

References:

[1] G. A. Baker, D. Bessis, and P. Moussa, A Family of Almost Periodic Schrödinger Operators, Los Alamos preprint (1983). · Zbl 0598.47054
[2] M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Orthogonal Polynomials Associated with Invariant Measures on Julia Sets,Bull. A.M.S. 7:381-384 (1982). · Zbl 0509.30023 · doi:10.1090/S0273-0979-1982-15043-1
[3] M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Some Treelike Julia Sets and Padé Approximants,Lett. Math. Phys. 7:279-286 (1983). · Zbl 0532.41023 · doi:10.1007/BF00420176
[4] M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, On the Invariant Sets of a Family of Quadratic Maps,Commun. Math. Phys. 88:479-501 (1983). · Zbl 0535.30024 · doi:10.1007/BF01211955
[5] M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Infinite Dimensional Jacobi Matrices Associated with Julia Sets,Proc. A.M.S. 88:625-630 (1983); also, Almost Periodic Operators Associated with Julia Sets (Georgia Institute of Technology Preprint), submitted toCommun. Math. Phys. (1983). · Zbl 0535.30025 · doi:10.1090/S0002-9939-1983-0702288-6
[6] M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Geometry Electrostatic Measure and Orthogonal Polynomials on Julia Sets for Polynomials, to appear inJ. Ergodic Theory Dyn. Syst. (1983). · Zbl 0566.41033
[7] M. F. Barnsley, J. S. Geronimo, and A. N. Harrington, Condensed Julia Sets, with an Application to a Fractal Lattice Model Hamiltonian, (Georgia Institute of Technology Preprint, 1983), to appearTrans. Am. Math. Soc. (1984).
[8] M. F. Barnsley and A. N. Harrington, Moments of Balanced Measures on Julia Sets,Trans. A.M.S. 284:271-280 (1984). · Zbl 0512.30014 · doi:10.1090/S0002-9947-1984-0742425-6
[9] J. Bellissard, D. Bessis, and P. Moussa, Chaotic States for Almost Periodic Schrödinger Operators,Phys. Rev. Lett. 49:701-704 (1982). · doi:10.1103/PhysRevLett.49.701
[10] D. Bessis, M. L. Mehta, and P. Moussa, Orthogonal Polynomials on a Family of Cantor Sets and the Problem of Iteration of Quadratic Maps,Lett. Math. Phys. 6:123-140 (1982). · Zbl 0483.33006 · doi:10.1007/BF00401737
[11] D. Bessis and P. Moussa, Orthogonality Properties of Iterated Polynomial Mappings,Commun. Math. Phys. 88:503-529 (1983). · Zbl 0523.30019 · doi:10.1007/BF01211956
[12] P. Billingsley,Ergodic Theory and Information (Wiley, New York, 1965). · Zbl 0141.16702
[13] H. Brolin, Invariant Sets under Iteration of Rational Functions,Ark. Mat. 6:103-144 (1965). · Zbl 0127.03401 · doi:10.1007/BF02591353
[14] P. Collet and J. Eckmann,Iterated Maps on the Interval as Dynamical Systems (Birkhauser, Basel, Boston, 1980). · Zbl 0458.58002
[15] J. H. Curry, L. Garnett, and D. Sullivan, On the Iteration of a Rational Function: Computer Experiments with Newton’s Method. To appearCommun. Math. Phys. (1983). · Zbl 0524.65032
[16] P. Collet and C. Tresser, Itérations d’Endomorphismes et Groupe de Renormalisation,C.R. Acad. Sc. Paris 287A:577-580 (1978). · Zbl 0402.54046
[17] B. Derrida, A. Gervois, and Y. Pomeau, Universal Metric Properties of Bifurcations of Endomorphisms,J. Phys. A12:269 (1979); also Iteration of Endomorphisms of the Real Axis and Representations of Numbers,Ann. Inst. Henri-Poincaré 29:305 (1978). · Zbl 0416.28012
[18] B. Derrida, L. DeSeze, and C. Itzykison, Fractal Structure of Zeros in Hierarchical Models, Preprint, CENS-SACLAY, Paris (1983).
[19] E. Domany, S. Alexander, D. Bensimon and L. P. Kadanoff, Solutions to the Schrödinger Equation on Some Fractal Lattices,Phys. Rev. B 28:3110-3123 (1983). · doi:10.1103/PhysRevB.28.3110
[20] A. Douady and J. H. Hubbard, Itération des Polynômes Quadratiques Complexes,C.R. Acad. Sci. Paris 294:123-126 (1982); see also A. Douady, Seminaire Bourbaki 599,Asterique, Vol.105-106:39-63 (1983). · Zbl 0483.30014
[21] M. P. Fatou, Sur les Equations Fonctionnelles,Bull. Soc. Math. France 47:161-271 (1919); 48:33-94; 48:208-314. · JFM 47.0921.02
[22] H. Epstein and J. Lascoux, Analyticity Properties of the Feigenbaum Function,Commun. Math. Phys. 81:437-453 (1981). · Zbl 0478.58022 · doi:10.1007/BF01209078
[23] M. Feigenbaum, Quantitative Universality for a Class of Nonlinear Transformations,J. Stat. Phys. 19:25-52 (1978). · Zbl 0509.58037 · doi:10.1007/BF01020332
[24] M. Feigenbaum, presentation at ?Chaos in Dynamical Systems? conference, University of Maryland, March 1983.
[25] J. Guckenheimer, On the Bifurcation of Maps of the Interval,Inventiones Math. 39:165-178 (1977). · Zbl 0354.58013 · doi:10.1007/BF01390107
[26] J. Guckenheimer, Sensitive Dependence to Initial Conditions for One-Dimensional Maps,Commun. Math. Phys. 70:133-160 (1979). · Zbl 0429.58012 · doi:10.1007/BF01982351
[27] G. Julia, Mémoire sur l’Itération des Fonctions Rationelles,J. Math. Pures Appl. 4:47-245 (1918). · JFM 46.0520.06
[28] R.-J. De Jonkere, Convergence de l’Itération des Fonctions Rationelles, (1963) thesis: Université Catholique de Louvain, Faculté des Sciences Appliquées.
[29] T. Li and J. A. Yorke, Period Three Implies Chaos,Am. Math. Monthly 82:985-992 (1975). · Zbl 0351.92021 · doi:10.2307/2318254
[30] O. E. Lanford III, A Computer Assisted Proof of the Feigenbaum Conjectures,Bull. A.M.S. 6:427-434 (1982). · Zbl 0487.58017 · doi:10.1090/S0273-0979-1982-15008-X
[31] B. B. Mandelbrot, Fractal Aspects of the Iterationz??z(1?z) for Complex? andz. Non-linear Dynamics, ed. R. H. G. Helleman,Ann. N. Y. Acad. Sci. 357, 249-259 (1980).
[32] J. Mallet-Paret and J. A. Yorke, Snakes: Oriented Families of Periodic Orbits, Their Sources, Sinks, and Continuation,J. Diff. Equations 43:419-450 (1982). · Zbl 0487.34038 · doi:10.1016/0022-0396(82)90085-7
[33] B. Mendelson,Introduction to Topology (Blackie and Son, Ltd., London, 1983). · Zbl 0114.13802
[34] P. J. Myrberg, Sur l’Itération des Polynomes Réels Quadratiques,J. Math. Pures Appl. Sér. 41:339-351 (1962). · Zbl 0106.04703
[35] M. Metropolis, M. L. Stein, and P. R. Stein, On Finite Limit Sets for Transformations of the Unit Inverval,J. Combinat. Theory 15:25-44 (1973). · Zbl 0259.26003 · doi:10.1016/0097-3165(73)90033-2
[36] J. Milnor and P. Thurston, On Iterated Maps of the Interval, Preprint, Princeton (1977). · Zbl 0664.58015
[37] R. Rammel, On the Nature of Eigenstates on Fractal Structures,Phys. Rev. B 28:4871-4873 (1983); see alsoJ. Phys. (Paris) 45:191-206 (1984). · doi:10.1103/PhysRevB.28.4871
[38] D. Ruelle, Repellers for Real Analytic Maps,Ergod. Theory Dyn. Syst. 2:99-108 (1982). · Zbl 0506.58024 · doi:10.1017/S0143385700009603
[39] A. N. Sharkovskii, Coexistence of Cycles of a Continuous Map of a Line into Itself,Ukr. Mat. Z. 16:61-71 (1964).
[40] D. Sullivan, private communication (1982).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.