×

Idempotent relations and factors of Jacobians. (English) Zbl 0652.14011

Let \(\pi_ i:\) \(C\to C_ i\), \(1\leq i\leq n\), be a collection of subcovers of a curve C. In this paper we investigate isogeny relations among the Jacobians \(J_ i=J_{C_ i}\), of the curves \(C_ i\). Denoting by \(\epsilon_ i=\epsilon_{\pi_ i}\in End^ 0(J_ C)\) the idempotent attached to the morphism \(\pi_ i\), we have the following result:
Theorem 1: \(J_ 1\times...\times J_ m\sim J_{m+1}\times...\times J_ n\Leftrightarrow \epsilon_ 1+...+\epsilon_ m\sim \epsilon_{m+1}+...+\epsilon_ n.\)
Here, the first \(\sim\) denotes isogeny of abelian varieties whereas the second \(\sim\) denotes “character equivalence” for elements \(a_ 1,a_ 2\in End^ 0(J):\) \(a_ 1\sim a_ 2\Leftrightarrow \chi (a_ 1)=\chi (a_ 2)\), all \({\mathbb{Q}}\)-characters \(\chi\) of \(End^ 0(J).\)
From theorem 1 follows in particular that every such idempotent relation induces the relation \(g_ 1+...+g_ m=g_{m+1}+...+g_ n\) among the genera \(g_ i=g_{C_ i}\) of the curves \(C_ i\), thereby generalizing a result of the reviewer [Can. Math. Bull. 28, 321-327 (1985; Zbl 0557.14017)], which in turn generalizes results of R. D. M. Accola [Proc. Am. Math. Soc. 21, 477-482 (1969; Zbl 0174.374) and 25, 598-602 (1970; Zbl 0212.425)].
Theorem 1 is, in fact a special case of a general theorem about idempotents \(\epsilon_ i\in End^ 0(A)\) on an abelian variety A and their corresponding factors \(\epsilon_ i(A):\)
Theorem 2: \(\epsilon_ 1(A)\times...\times \epsilon_ m(A)\sim \epsilon_{m+1}(A)\times...\times \epsilon_ n(A)\Leftrightarrow \epsilon_ 1+...+\epsilon_ m\sim \epsilon_{m+1}+...+\epsilon_ n.\)
The usefulness of theorem 1 rests ultimately on the ability to readily exhibit idempotent relations in \(End^ 0(J_ C)\). We present two such methods: viz. \((1)\quad via\) Galois theory (studying idempotent relations in \({\mathbb{Q}}[G])\); and \((2)\quad via\) intersection theory on the product surface \(C\times C\); and apply these to derive interesting isogeny relations for subcovers of \((a)\quad the\) Fermat curves; \((b)\quad the\) modular curves X(p); \((c)\quad the\) Drinfeld curves \(XY^ q-YX^ q=1\) and \((d)\quad the\) Humbert curves.
Reviewer: E.Kani

MSC:

14H40 Jacobians, Prym varieties
14H25 Arithmetic ground fields for curves
14K99 Abelian varieties and schemes
14H30 Coverings of curves, fundamental group

Keywords:

isogeny; Jacobians

References:

[1] Accola, R.D.: Riemann surfaces with automorphism groups admitting partitions. Proc. Am. Math. Soc.21, 477-482 (1969) · Zbl 0174.37401 · doi:10.1090/S0002-9939-1969-0237764-9
[2] Accola, R.D.: Two theorems on Riemann surfaces with non-cyclic automorphism groups. Proc. Am. Math. Soc.25, 598-602 (1970) · Zbl 0212.42502
[3] Accola, R.D.: Riemann surfaces, theta functions, and Abelian automorphism groups. (Lecture Notes Mathematics, Vol. 483, 105 pp). Berlin Heidelberg New York: Springer 1975 · Zbl 0316.30016
[4] Albert, A.A.: Structure of algebras. Am. Math. Soc. Colloq. Publ. Providence, R.I., 1961 · Zbl 0109.12401
[5] Baer, R.: Partitionen endlicher Gruppen. Math. Z.75, 333-372 (1961) · Zbl 0103.01404 · doi:10.1007/BF01211032
[6] Berthelot, P.: Slopes of Frobenius in crystalline cohomology. Proc. Symp. Pure Math.29, 315-328 (1975) · Zbl 0323.14008
[7] Curtis, C.W., Reiner, I.: Representation theory of finite groups and associative algebras. New York: Interscience 1962 · Zbl 0131.25601
[8] Curtis, C.W., Reiner, I.: Methods of representation theory. I. New York: Wiley 1981 · Zbl 0469.20001
[9] Curtis, C.W., Reiner, I.: Method of representation theory. II. New York: Wiley 1987 · Zbl 0616.20001
[10] Demazure, M.: Lectures onp-divisible groups. (Lecture Notes Mathematics, Vol. 302, 98 pp.). Berlin Heidelberg New York: Springer 1972 · Zbl 0247.14010
[11] Frey, G., Rück, H.-G.: The strong Lefschetz principle in algebraic geometry. Manuscr. Math.55, 385-401 (1986) · Zbl 0609.14019 · doi:10.1007/BF01186653
[12] Huppert, B.: Endliche Gruppen. I. Berlin: Springer 1967 · Zbl 0217.07201
[13] Kani, E.: On Castelnuovo’s equivalence defect. J. Reine Angew. Math.352, 24-70 (1984) · Zbl 0536.14016 · doi:10.1515/crll.1984.352.24
[14] Kani, E.: Relations between the genera and between the Hasse-Witt invariants of galois coverings of curves. Can. Math. Bull.28, 321-327 (1985) · Zbl 0557.14017 · doi:10.4153/CMB-1985-038-0
[15] Kani, E.: Bounds on the number of non-rational subfields of a function field. Invent. Math.85, 185-198 (1986) · Zbl 0615.12017 · doi:10.1007/BF01388797
[16] Kegel, O.: Nicht-einfache Partitionen endlicher Gruppen. Arch. Math.12, 170-175 (1961) · Zbl 0123.02505 · doi:10.1007/BF01650543
[17] Lang, S.: Introduction to algebraic and Abelian functions. (2nd ed.). Berlin Heidelberg New York: Springer 1982 · Zbl 0513.14024
[18] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. IHES47, 33-186 (1977) · Zbl 0394.14008
[19] Milne, J.S.: Abelian varieties. In: Arithmetic geometry G. Cornell, J. Silverman (eds.). Berlin Heidelberg New York: Springer 1986 · Zbl 0604.14028
[20] Mumford, D.: Abelian varieties. London: Oxford University Press 1970 · Zbl 0223.14022
[21] Rehm, H.P.: Über die gruppentheoretische Struktur der Relationen zwischen Relativnormabbildungen in endlichen Galoisschen Körpererweiterungen. J. Number Theory7, 49-70 (1975) · Zbl 0295.12003 · doi:10.1016/0022-314X(75)90007-4
[22] Serre, J.-P.: Abelianl-adic representations and elliptic curves. New York: Benjamin 1968
[23] Serre, J.-P.: Local fields. Berlin Heidelberg New York: Springer 1979
[24] Suzuki, M.: On a finite group with a partition. Arch. Math.12, 241-254 (1961) · Zbl 0107.25902 · doi:10.1007/BF01650557
[25] Weil, A.: Courbes algébriques et variétés abéliennes. Paris: Hermann 1971
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.