×

Uniform and mean approximation by certain weighted polynomials, with applications. (English) Zbl 0646.41003

Let \({\mathcal P}_ n\) be the class of polynomials of degree \(\leq n\). Let \(VSF(\alpha)\) be the class of functions \(w(x)=\exp (-Q(x))\) where Q(x) is even, continuous and \(Q'(x)\) exists for \(x>0\), while xQ’(x) remains bounded as \(x\to 0_+\). Further, assume that \(Q'''(x)\) exists for x large enough, and for some \(C>0\) and \(\alpha >0,Q'(x)>0\), x large enough, \(x^ 2| Q'''(x)| /Q'(x)\leq C,\) x large enough, and \(\lim_{x\to \infty}(1+xQ''(x)/Q'(x))=\alpha.\) The main results are: Let \(W\in VSF(\alpha)\), \(\alpha >0\) and \(a_ n=a_ n(W)\) be positive roots of the equation \(n=(2/\pi)\int^{1}_{0}a_ nxQ'(x)/\sqrt{1-x^ 2}\cdot dx,\) such that \(\limsup_{n\to \infty}a_ n/n>0.\) Let g(x) be continuous in \({\mathbb{R}}\) and \(g(0)=0\). Let \(\{k_ n\}_ 1^{\infty}\) be a sequence of nonnegative integers with \(\lim_{n\to \infty}k_ n/n=0\). Then, there exists \(P_ n\in {\mathcal P}_{n-k_ n}\), \(n=1,2,..\). such that \(\lim_{n\to \infty}\| g(x)-P_ n(x)W(a_ nx)\|_{L_{\infty}({\mathbb{R}})}=0\) if and only if \(g(x)=0\) for \(| x| \geq 1\). A similar result holds for \(L_ p({\mathbb{R}})\). These results confirm a conjecture of Saff for \(W(x)=\exp (-| x|^{\alpha})\) when \(\alpha >1\). Other applications of these results are upper bounds for Christoffel functions.
Reviewer: L.Ciobanu

MSC:

41A10 Approximation by polynomials
Full Text: DOI

References:

[1] W. C. Bauldry (1985): Orthogonal Polynomials Associated with Exponential Weights. Ph.D. Dissertation, Ohio State University, Columbus, OH.
[2] S. Bonan (1984):Applications of G. Freud’s theory, I. In: Approximation Theory IV (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.). New York: Academic Press, pp. 347–351.
[3] S. Bonan and D. Clark (1988):Estimates of the orthogonal polynomials with weight exp( m ),m an even positive integer, Constr. Approx.,4:9–20. · Zbl 0646.41002 · doi:10.1007/BF02075446
[4] Z. Ditzian and V. Totik (unpublished):Moduli of smoothness.
[5] H. B. Dwight (1961): Tables of Integrals and Other Mathematical Data, 4th edn. New York: Macmillan. · Zbl 0154.18410
[6] G. Freud (1971):On an inequality of Markov type. Soviet Math. Dokl.,12:570–573. · Zbl 0221.41008
[7] G. Freud (1971): Orthogonal Polynomials. Budapest: Akademiai Kiado; Oxford: Pergamon Press. · Zbl 0226.33014
[8] G. Freud (1974):On the theory of one sided weighted L 1-approximation by polynomials. In: Linear Operators and Approximation II (P. L. Butzeret al., eds.). International Series of Numerical Mathematics, vol. 42. Basel: Birkhauser Verlag, pp. 285–303. · Zbl 0291.41005
[9] G. Freud (1977):On Markov-Bernstein type inequalities and their applications. J. Approx. Theory,19:22–37. · Zbl 0356.41003 · doi:10.1016/0021-9045(77)90026-0
[10] G. Freud, A. Giroux, Q. I. Rahman (1978):Surl’ approximation polynomiale avec poids exp(-|x|). Canad. J. Math.,30:358–372. · Zbl 0409.41002 · doi:10.4153/CJM-1978-032-7
[11] A. A. Goncar, E. A. Rahmanov (1986):Equilibrium measure and the distribution of zeros of extremal polynomials. Math. USSR.-Sb.,53:119–130. · Zbl 0618.30008 · doi:10.1070/SM1986v053n01ABEH002912
[12] A. Knopfmacher, D. S. Lubinsky, P. Nevai (1988):Freud’s conjecture and approximation of reciprocals of weights by polynomials. Constr. Approx.,4:9–20. · Zbl 0646.41002 · doi:10.1007/BF02075446
[13] A. L. Levin, D. S. Lubinsky (1987):Canonical products and the weights exp(x| {\(\alpha\)} ),{\(\alpha\)} > 1, with applications. J. Approx. Theory,49:149–169. · Zbl 0619.41006 · doi:10.1016/0021-9045(87)90085-2
[14] A. L. Levin, D. S. Lubinsky (1987):Weights on the real line that admit good relative polynomial approximation, with applications. J. Approx. Theory,49:170–195. · Zbl 0612.41010 · doi:10.1016/0021-9045(87)90086-4
[15] D. S. Lubinsky (1984):A weighted polynomial inequality. Proc. Amer. Math. Soc.,92:263–267. · Zbl 0518.41009 · doi:10.1090/S0002-9939-1984-0754716-9
[16] D. S. Lubinsky (1985):Estimates of Freud-Christoffel functions for some weights with the whole real line as support. J. Approx. Theory,44:343–379. · Zbl 0584.42015 · doi:10.1016/0021-9045(85)90086-3
[17] D. S. Lubinsky (1985):Even entire functions absolutely monotone in [0, and weights on the whole real line. In: Orthogonal Polynomials and Their Applications (C. Brezinskiet al., eds.). Lecture Notes in Mathematics, vol. 1171. Berlin: Springer-Verlag, pp. 221–229. · Zbl 0599.41048
[18] D. S. Lubinsky (1986):Gaussian quadrature, weights on the whole real line and even entire functions with nonnegative even order derivatives. J. Approx. Theory,46:297–313. · Zbl 0608.41017 · doi:10.1016/0021-9045(86)90067-5
[19] D. S. Lubinsky (unpublished): Variation on a Theme of Mhaskar, Rahmanov, and Saff, or ”Sharp” Weighted Polynomial Inequalities in Lp(R). NRIMS Internal Report: 1575–1984.
[20] D. S. Lubinsky, A. Máté, P. Nevai (1987):Quadrature sums involving pth powers of polynomials. SIAM J. Math. Anal.,18:531–544. · Zbl 0623.41029 · doi:10.1137/0518041
[21] D. S. Lubinsky, H. N. Mhaskar, E. B. Saff (1988):A proof of Freud’s conjecture for exponential weights. Constr. Approx.,4:65–83. · Zbl 0653.42024 · doi:10.1007/BF02075448
[22] A. Magnus (1985):A proof of Freud’s conjecture about orthogonal polynomials related to |x| p exp(-x 2m). In: Orthogonal Polynomials and Their Applications (C. Brezinskiet al., eds.). Lecture Notes in Mathematics, vol. 1171. Berlin: Springer-Verlag, pp. 362–372.
[23] A. Magnus (1986):On Freud’s equations for exponential weights. J. Approx. Theory46:65–99. · Zbl 0619.42015 · doi:10.1016/0021-9045(86)90088-2
[24] A. Máté, P. Nevai, V. Totik (1986):Asymptotics for the zeros of orthogonal polynomials associated with infinite intervals. J. London Math. Soc.,33: 303–310. · Zbl 0639.42023 · doi:10.1112/jlms/s2-33.2.303
[25] A. Máté, P. Nevai, T. Zaslavsky (1985):Asymptotic expansion of ratios of coefficients of orthogonal polynomials with exponential weights. Trans. Amer. Math. Soc.,287:495–505. · Zbl 0536.42023 · doi:10.1090/S0002-9947-1985-0768722-7
[26] H. N. Mhaskar (1986):Weighted polynomial approximation. J. Approx. Theory,46:100–110. · Zbl 0602.41004 · doi:10.1016/0021-9045(86)90089-4
[27] H. N. Mhaskar, E. B. Saff (1984):Extremal problems for polynomials with exponential weights. Trans. Amer. Math. Soc.,285:203–234. · Zbl 0546.41014 · doi:10.1090/S0002-9947-1984-0748838-0
[28] H. N. Mhaskar, E. B. Saff (1984):Weighted polynomials on finite and infinite intervals: a unified approach. Bull. Amer. Math. Soc.,11:351–354. · Zbl 0565.41017 · doi:10.1090/S0273-0979-1984-15303-5
[29] H. N. Mhaskar, E. B. Saff (1985):Where does the sup norm of a weighted polynomial live? (A generalization of incomplete polynomials). Constr. Approx., 1:71–91. · Zbl 0582.41009 · doi:10.1007/BF01890023
[30] H. N. Mhaskar, E. B. Saff (1985):A Weierstrass type theorem for certain weighted polynomials. In: Approximation Theory and Applications (S. P. Singh, ed.). Boston: Pitman, pp. 115–123. · Zbl 0578.41007
[31] H. N. Mhaskar, E. B. Saff (to appear):Where does the L p -norm of a weighted polynomial live? Trans. Amer. Math. Soc.
[32] P. Nevai (1973):Orthogonal polynomials on the real line associated with the weight |x| {\(\alpha\)} exp(x| {\(\beta\)} ),I. Acta Math. Sci. Math. Hungar.,24:335–342 (in Russian). · Zbl 0293.33010 · doi:10.1007/BF01958044
[33] P. Nevai (1979):Orthogonal polynomials. Mem. Amer. Math. Soc.,213:1–185. · Zbl 0405.33009
[34] P. Nevai (1984):Asymptotics for orthogonal polynomials associated with exp(-x 4). SIAM J. Math. Anal., 15:1177–1187. · Zbl 0566.42016 · doi:10.1137/0515092
[35] P. Nevai (1985):Exact bounds for orthogonal polynomials associated with exponential weights. J. Approx. Theory,44:82–85. · Zbl 0605.42019 · doi:10.1016/0021-9045(85)90070-X
[36] P. Nevai (1986):Geza Freud, Christoffel functions and orthogonal polynomials (a case study). J. Approx. Theory,48:3–167. · Zbl 0606.42020 · doi:10.1016/0021-9045(86)90016-X
[37] P. Nevai, J. S. Dehesa (1979):On asymptotic average properties of zeros of orthogonal polynomials. SIAM J. Math. Anal.,10:1184–1192. · Zbl 0434.33010 · doi:10.1137/0510107
[38] P. Nevai, V. Totik (1986):Weighted polynomial inequalities. Constr. Approx.,2:113–127. · Zbl 0604.41014 · doi:10.1007/BF01893420
[39] E. A. Rahmanov (1984):On asymptotic properties of polynomials orthogonal on the real axis. Math. USSR-Sb.,47:155–193. · Zbl 0522.42018 · doi:10.1070/SM1984v047n01ABEH002636
[40] E. D. Rainville (1960): Special Functions. New York: Chelsea. · Zbl 0092.06503
[41] E. B. Saff (1983):Incomplete and orthogonal polynomials. In: Approximation Theory IV (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.). New York: Academic Press, pp. 219–256. · Zbl 0563.41006
[42] E. B. Saff, R. S. Varga (1978):Uniform approximation by incomplete polynomials. Internat. J. Math. Math. Sci.,1:407–420. · Zbl 0421.41006 · doi:10.1155/S0161171278000411
[43] R. Sheen (to appear):Asymptotics for orthogonal polynomials associated with exp(-x6/6). J. Approx. Theory. · Zbl 0617.42017
[44] G. Szegö (1939): Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23, 3rd edn. Providence, RI: American Mathematical Society.
[45] J. L. Ullman (1980):Orthogonal polynomials associated with an infinite interval. Michigan Math. J.,27:353–363. · Zbl 0455.33004 · doi:10.1307/mmj/1029002408
[46] J. L. Ullman (1980):On orthogonal polynomials associated with an infinite interval. In: Approximation Theory III (E. W. Cheney, ed.). New York: Academic Press, pp. 889–895. · Zbl 0455.33004
[47] J. L. Walsh (1935): Interpolation and Approximation by Rational Functions in the Complex Domain. American Mathematical Society Colloquium Publications, vol. 20. Providence, RI: American Mathematical Society. · Zbl 0013.05903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.