Skip to main content
Log in

Uniform and mean approximation by certain weighted polynomials, with applications

  • Published:
Constructive Approximation Aims and scope

Abstract

LetW(x):= exp(-{tiQ(x})), where, for example, Q(x) is even and convex onR, and Q(x)/logx → ∞ asx → ∞. A result of Mhaskar and Saff asserts that ifa n =a n (W) is the positive root of the equation

$$n = ({2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi })\int_0^1 {{{a_n xQ'(a_n x)} \mathord{\left/ {\vphantom {{a_n xQ'(a_n x)} {\sqrt {1 - x^2 } }}} \right. \kern-\nulldelimiterspace} {\sqrt {1 - x^2 } }}dx,}$$

then, given any polynomialP n(x) of degree at mostn, the sup norm ofP n(x)W(a n x) overR is attained on [-1, 1]. In addition, any sequence of weighted polynomials {p n (x)W(a n x)} 1 that is uniformly bounded onR will converge to 0, for ¦x¦>1.

In this paper we show that under certain conditions onW, a function g(x) continuous inR can be approximated in the uniform norm by such a sequence {p n (x)W(a n x)} 1 if and only if g(x)=0 for ¦x¦⩾ 1. We also prove anL p analogue for 0<p<∞. Our results confirm a conjecture of Saff forW(x)=exp(−|x|α), when α >1. Further applications of our results are upper bounds for Christoffel functions, and asymptotic behavior of the largest zeros of orthogonal polynomials. A final application is an approximation theorem that will be used in a forthcoming proof of Freud's conjecture for |x|p exp(−|x|α),α > 0,p > −1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. C. Bauldry (1985): Orthogonal Polynomials Associated with Exponential Weights. Ph.D. Dissertation, Ohio State University, Columbus, OH.

    Google Scholar 

  2. S. Bonan (1984):Applications of G. Freud's theory, I. In: Approximation Theory IV (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.). New York: Academic Press, pp. 347–351.

    Google Scholar 

  3. S. Bonan and D. Clark (1988):Estimates of the orthogonal polynomials with weight exp(−x m),m an even positive integer, Constr. Approx.,4:9–20.

    Google Scholar 

  4. Z. Ditzian and V. Totik (unpublished):Moduli of smoothness.

  5. H. B. Dwight (1961): Tables of Integrals and Other Mathematical Data, 4th edn. New York: Macmillan.

    Google Scholar 

  6. G. Freud (1971):On an inequality of Markov type. Soviet Math. Dokl.,12:570–573.

    Google Scholar 

  7. G. Freud (1971): Orthogonal Polynomials. Budapest: Akademiai Kiado; Oxford: Pergamon Press.

    Google Scholar 

  8. G. Freud (1974):On the theory of one sided weighted L 1-approximation by polynomials. In: Linear Operators and Approximation II (P. L. Butzeret al., eds.). International Series of Numerical Mathematics, vol. 42. Basel: Birkhauser Verlag, pp. 285–303.

    Google Scholar 

  9. G. Freud (1977):On Markov-Bernstein type inequalities and their applications. J. Approx. Theory,19:22–37.

    Google Scholar 

  10. G. Freud, A. Giroux, Q. I. Rahman (1978):Surl' approximation polynomiale avec poids exp(-¦x¦). Canad. J. Math.,30:358–372.

    Google Scholar 

  11. A. A. Goncar, E. A. Rahmanov (1986):Equilibrium measure and the distribution of zeros of extremal polynomials. Math. USSR.-Sb.,53:119–130.

    Google Scholar 

  12. A. Knopfmacher, D. S. Lubinsky, P. Nevai (1988):Freud's conjecture and approximation of reciprocals of weights by polynomials. Constr. Approx.,4:9–20.

    Google Scholar 

  13. A. L. Levin, D. S. Lubinsky (1987):Canonical products and the weights exp(−|x|α),α > 1, with applications. J. Approx. Theory,49:149–169.

    Google Scholar 

  14. A. L. Levin, D. S. Lubinsky (1987):Weights on the real line that admit good relative polynomial approximation, with applications. J. Approx. Theory,49:170–195.

    Google Scholar 

  15. D. S. Lubinsky (1984):A weighted polynomial inequality. Proc. Amer. Math. Soc.,92:263–267.

    Google Scholar 

  16. D. S. Lubinsky (1985):Estimates of Freud-Christoffel functions for some weights with the whole real line as support. J. Approx. Theory,44:343–379.

    Google Scholar 

  17. D. S. Lubinsky (1985):Even entire functions absolutely monotone in [0, ∞) and weights on the whole real line. In: Orthogonal Polynomials and Their Applications (C. Brezinskiet al., eds.). Lecture Notes in Mathematics, vol. 1171. Berlin: Springer-Verlag, pp. 221–229.

    Google Scholar 

  18. D. S. Lubinsky (1986):Gaussian quadrature, weights on the whole real line and even entire functions with nonnegative even order derivatives. J. Approx. Theory,46:297–313.

    Google Scholar 

  19. D. S. Lubinsky (unpublished): Variation on a Theme of Mhaskar, Rahmanov, and Saff, or “Sharp” Weighted Polynomial Inequalities in Lp(R). NRIMS Internal Report: 1575–1984.

  20. D. S. Lubinsky, A. Máté, P. Nevai (1987):Quadrature sums involving pth powers of polynomials. SIAM J. Math. Anal.,18:531–544.

    Google Scholar 

  21. D. S. Lubinsky, H. N. Mhaskar, E. B. Saff (1988):A proof of Freud's conjecture for exponential weights. Constr. Approx.,4:65–83.

    Google Scholar 

  22. A. Magnus (1985):A proof of Freud's conjecture about orthogonal polynomials related to ¦x¦ p exp(-x 2m). In: Orthogonal Polynomials and Their Applications (C. Brezinskiet al., eds.). Lecture Notes in Mathematics, vol. 1171. Berlin: Springer-Verlag, pp. 362–372.

    Google Scholar 

  23. A. Magnus (1986):On Freud's equations for exponential weights. J. Approx. Theory46:65–99.

    Google Scholar 

  24. A. Máté, P. Nevai, V. Totik (1986):Asymptotics for the zeros of orthogonal polynomials associated with infinite intervals. J. London Math. Soc.,33: 303–310.

    Google Scholar 

  25. A. Máté, P. Nevai, T. Zaslavsky (1985):Asymptotic expansion of ratios of coefficients of orthogonal polynomials with exponential weights. Trans. Amer. Math. Soc.,287:495–505.

    Google Scholar 

  26. H. N. Mhaskar (1986):Weighted polynomial approximation. J. Approx. Theory,46:100–110.

    Google Scholar 

  27. H. N. Mhaskar, E. B. Saff (1984):Extremal problems for polynomials with exponential weights. Trans. Amer. Math. Soc.,285:203–234.

    Google Scholar 

  28. H. N. Mhaskar, E. B. Saff (1984):Weighted polynomials on finite and infinite intervals: a unified approach. Bull. Amer. Math. Soc.,11:351–354.

    Google Scholar 

  29. H. N. Mhaskar, E. B. Saff (1985):Where does the sup norm of a weighted polynomial live? (A generalization of incomplete polynomials). Constr. Approx., 1:71–91.

    Google Scholar 

  30. H. N. Mhaskar, E. B. Saff (1985):A Weierstrass type theorem for certain weighted polynomials. In: Approximation Theory and Applications (S. P. Singh, ed.). Boston: Pitman, pp. 115–123.

    Google Scholar 

  31. H. N. Mhaskar, E. B. Saff (to appear):Where does the L p-norm of a weighted polynomial live? Trans. Amer. Math. Soc.

  32. P. Nevai (1973):Orthogonal polynomials on the real line associated with the weight |x|α exp(−|x|β),I. Acta Math. Sci. Math. Hungar.,24:335–342 (in Russian).

    Google Scholar 

  33. P. Nevai (1979):Orthogonal polynomials. Mem. Amer. Math. Soc.,213:1–185.

    Google Scholar 

  34. P. Nevai (1984):Asymptotics for orthogonal polynomials associated with exp(-x 4). SIAM J. Math. Anal., 15:1177–1187.

    Google Scholar 

  35. P. Nevai (1985):Exact bounds for orthogonal polynomials associated with exponential weights. J. Approx. Theory,44:82–85.

    Google Scholar 

  36. P. Nevai (1986):Geza Freud, Christoffel functions and orthogonal polynomials (a case study). J. Approx. Theory,48:3–167.

    Google Scholar 

  37. P. Nevai, J. S. Dehesa (1979):On asymptotic average properties of zeros of orthogonal polynomials. SIAM J. Math. Anal.,10:1184–1192.

    Google Scholar 

  38. P. Nevai, V. Totik (1986):Weighted polynomial inequalities. Constr. Approx.,2:113–127.

    Google Scholar 

  39. E. A. Rahmanov (1984):On asymptotic properties of polynomials orthogonal on the real axis. Math. USSR-Sb.,47:155–193.

    Google Scholar 

  40. E. D. Rainville (1960): Special Functions. New York: Chelsea.

    Google Scholar 

  41. E. B. Saff (1983):Incomplete and orthogonal polynomials. In: Approximation Theory IV (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.). New York: Academic Press, pp. 219–256.

    Google Scholar 

  42. E. B. Saff, R. S. Varga (1978):Uniform approximation by incomplete polynomials. Internat. J. Math. Math. Sci.,1:407–420.

    Google Scholar 

  43. R. Sheen (to appear):Asymptotics for orthogonal polynomials associated with exp(-x6/6). J. Approx. Theory.

  44. G. Szegö (1939): Orthogonal Polynomials. American Mathematical Society Colloquium Publications, vol. 23, 3rd edn. Providence, RI: American Mathematical Society.

    Google Scholar 

  45. J. L. Ullman (1980):Orthogonal polynomials associated with an infinite interval. Michigan Math. J.,27:353–363.

    Google Scholar 

  46. J. L. Ullman (1980):On orthogonal polynomials associated with an infinite interval. In: Approximation Theory III (E. W. Cheney, ed.). New York: Academic Press, pp. 889–895.

    Google Scholar 

  47. J. L. Walsh (1935): Interpolation and Approximation by Rational Functions in the Complex Domain. American Mathematical Society Colloquium Publications, vol. 20. Providence, RI: American Mathematical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Paul Nevai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubinsky, D.S., Saff, E.B. Uniform and mean approximation by certain weighted polynomials, with applications. Constr. Approx 4, 21–64 (1988). https://doi.org/10.1007/BF02075447

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02075447

AMS classification

Key words and phrases

Navigation