×

The Schrödinger equation and canonical perturbation theory. (English) Zbl 0622.35071

Working in the Bargmann representation, the Schrödinger equation for a perturbed d-dimensional harmonic oscillator is rewritten as a classical Hamilton-Jacobi equation plus corrections under the form of a convergent power series in the Planck constant h. Then the canonical (Birchoff) perturbation theory is applied and related to the Rayleigh-Schrödinger series. The results are relevant for the study of the semiclassical limit.
Reviewer: G.Nenciu

MSC:

35Q99 Partial differential equations of mathematical physics and other areas of application
81Q15 Perturbation theories for operators and differential equations in quantum theory
35J10 Schrödinger operator, Schrödinger equation
35B20 Perturbations in context of PDEs
Full Text: DOI

References:

[1] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. I. Commun. Pure Appl. Math.14, 187-214 (1961) · Zbl 0107.09102 · doi:10.1002/cpa.3160140303
[2] Bolley, P., Camus, J.: Regularité Gevrey et iterés pour une classe d’operateurs hypoelliptiques. Commun. Partial Differ. Equations6, 1057-1110 (1981) · Zbl 0468.35026 · doi:10.1080/03605308108820205
[3] Chierchia, L., Gallavotti, G.: Smooth prime integrals for quasi-integrable Hamiltonian systems. Nuovo Cim.67B, 277-295 (1982) · doi:10.1007/BF02721167
[4] Gallavotti, G.: The elements of mechanics. Berlin, Heidelberg, New York: Springer 1983 · Zbl 0512.70001
[5] Gallavotti, G.: Perturbation theory for classical Hamiltonian systems. In: Progress in physics. Fröhlich, J. (ed.), Boston: Birkhäuser 1982 · Zbl 0522.58045
[6] Hörmander, L.: The analysis of linear partial differential operators. Berlin, Heidelberg, New York: Springer 1983 · Zbl 0521.35002
[7] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0148.12601
[8] Maslov, V.P.: Theorie des perturbations et methods asymptotiques. Paris: Dunod 1972 · Zbl 0247.47010
[9] Moser, J.: Lectures on Hamiltonian systems. AMS Memoir81, 1973 · Zbl 0275.70011
[10] Pöschel, J.: Integrability of Hamiltonian systems on cantor sets. Commun. Pure Appl. Math.35, 653-707 (1982) · Zbl 0542.58015 · doi:10.1002/cpa.3160350504
[11] Reed, M., Simon, B.: Methods of modern mathematical physics, IV. New York: Academic Press 1978 · Zbl 0401.47001
[12] Turchetti, G.: Classical limit and Stieltjes property of perturbation series for classical anharmonic oscillators. Nuovo Cim.82B, 203-217 (1984) · doi:10.1007/BF02732873
[13] Voros, A.: Developments semi-classiques. These d’Etat n. 1843, Université de Paris-Sud, Centre d’Orsay 1977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.