×

The Gibbs- Wilbraham phenomenon: An episode in Fourier analysis. (English) Zbl 0424.42002


MSC:

42-03 History of harmonic analysis on Euclidean spaces
42A20 Convergence and absolute convergence of Fourier and trigonometric series
01A60 History of mathematics in the 20th century
01A55 History of mathematics in the 19th century
Full Text: DOI

References:

[1] Abramowitz, Milton, & Irene A. Stegun, editors. Handbook of mathematical functions with formulas, graphs and mathematical tables. Tenth printing, with corrections. National Bureau of Standards, Applied Mathematics Series, #55. Washington, D. C.: U.S. Government Printing Office, 1972. · Zbl 0543.33001
[2] Bari, Nina K. [????, ???? ?.]. Trigonometri?eskie rjady [? ????????????????? ????]. Moskva: Gos. Izdat. fiz.-mat. Literatury, 1961.
[3] Boas, R. P., Jr. Partial sums of infinite series, and how they grow. Amer. Math. Monthly 84 (1977), 237-258. · Zbl 0355.65001 · doi:10.2307/2318865
[4] Bôcher, Maxime. Introduction to the theory of Fourier’s series. Ann. of Math. (2) 7 (1905-1906), 81-152. · JFM 37.0285.01 · doi:10.2307/1967238
[5] Bôcher, Maxime. On Gibbs’s Phenomenon. J. reine angew. Math. 144 (1914), 41-47. · JFM 45.0406.01 · doi:10.1515/crll.1914.144.41
[6] Du Bois-Reymond, Paul. Über die sprungweisen Werthänderungen analytischer Functionen. Math. Ann. 7 (1874), 241-261. · JFM 06.0238.01 · doi:10.1007/BF02104802
[7] Burkhardt, H. Trigonometrische Reihen und Integrale bis etwa 1850. Encyklopädie der math. Wissenschaften, IIA 12. Leipzig: B. G. Teubner, 1914, pp. 819-1354. · JFM 45.0374.02
[8] Carslaw, H.S. A trigonometrical sum and the Gibbs’ phenomenon in Fourier’s series. Amer. J. Math. 39 (1917), 185-198. · JFM 46.0461.01 · doi:10.2307/2370535
[9] Carslaw, H. S. A historical note on Gibbs’ phenomenon in Fourier’s series and integrals. Bull. Amer. Math. Soc. 31 (1925), 420-424. · JFM 51.0009.06 · doi:10.1090/S0002-9904-1925-04081-1
[10] Carslaw, H. S. Gibbs’s phenomenon in the sum (C, r), for r>0, of Fourier’s integral. J. London Math. Soc. 1 (1926), 201-204. · JFM 52.0284.02 · doi:10.1112/jlms/s1-1.4.201
[11] Carslaw, H. S. Introduction to the theory of Fourier’s series and integrals. Third edition, revised and enlarged. London: Macmillan & Co., 1930. New York: Dover Publ. Co. reprint, 1952. · JFM 56.0243.01
[12] Cooke, Richard G. A case of Gibbs’s phenomenon. J. London Math. Soc. 3 (1928), 92-98. · JFM 54.0320.02 · doi:10.1112/jlms/s1-3.2.92
[13] Cooke, Richard G. Disappearing Gibbs’s phenomena. Proc. London Math. Soc. (2) 30 (1927-1930), 144-164. · JFM 55.0162.01 · doi:10.1112/plms/s2-30.1.144
[14] Cooke, Richard G. Gibbs’s phenomenon in Fourier-Bessel series and integrals. Proc. London Math. Soc. (2) 27 (1928), 171-192. · JFM 53.0337.03 · doi:10.1112/plms/s2-27.1.171
[15] Cooke, Richard G. Gibbs’s phenomenon in Schlömilch series. J. London Math. Soc. 4 (1928), 18-21. · JFM 55.0169.01 · doi:10.1112/jlms/s1-4.1.18
[16] Cramér, Harald. Études sur la sommation des séries de Fourier. Arkiv för Mathematik, Astronomi och Fysik 13 (1919), N{\(\deg\)} 20, 1-21. · JFM 47.0262.02
[17] Davis, Harry F. Fourier series and orthogonal functions. Boston, Mass: Allyn and Bacon, 1963. · Zbl 0804.42001
[18] Dym, H., & H. P. McKean. Fourier series and integrals. New York: Academic Press, 1972. · Zbl 0242.42001
[19] Fejér, Leopold. Über die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe. J. reine angew. Math 142 (1913), 165-188. · JFM 44.0483.01 · doi:10.1515/crll.1913.142.165
[20] Fejér, Leopold. Über konjugierte trigonometrische Reihen. J. reine angew. Math. 144 (1914), 48-56. · JFM 45.0405.03 · doi:10.1515/crll.1914.144.48
[21] Fejér, Leopold. Einige Sätze, die sich auf das Vorzeichen einer ganzen rationalen Funktion beziehen. Monatsh. Math. 35 (1928), 305-344. · JFM 54.0314.03 · doi:10.1007/BF01707447
[22] Gibbs, Josiah Willard. Letter in Nature 59 (1898-1899), 200. Also in Collected Works, Vol. II. New York: Longmans, Green & Co., 1927, 258-259. · JFM 30.0240.04 · doi:10.1038/059200b0
[23] Gibbs, Josiah Willard. Letter in Nature 59 (1898-1899), 606. Also in Collected Works, Vol. II. New York: Longmans, Green & Co., 1927, 259-260. · doi:10.1038/059606a0
[24] Gronwall, T. H. Über die Gibbsche Erscheinung und die trigonometrischen Summen \(sin x + \tfrac{1}{2}sin 2x + \cdots + \frac{1}{n}sin n x\) . Math. Ann. 72 (1912), 228-243. · JFM 43.0323.01 · doi:10.1007/BF01667325
[25] Gronwall, T. H. Zur Gibbschen Erscheinung. Ann. of Math. (2) 31 (1930), 232-240.
[26] Hardy, G. H., & W. W. Rogosinski. Notes on Fourier series (II): on the Gibbs phenomenon. J. London Math. Soc. 18 (1943), 83-87. · Zbl 0063.01928 · doi:10.1112/jlms/s1-18.2.83
[27] Hardy, G. H., & W. W. Rogosinski. Fourier series. Second edition. Cambridge Tracts Math. and Math. Phys., No. 38. London: Cambridge University Press, 1950. · Zbl 0037.05103
[28] Hyltén-Cavallius, Carl. Geometrical methods applied to trigonometrical sums. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Lund Universitet, Mat. Seminar Meddelanden]. Band 21, Nr. 1, 1950, 19 pp.
[29] Jackson, Dunham. Über eine trigonometrische Summe. Rend. Circ. Mat. Palermo 32 (1911), 257-262. · JFM 42.0281.03 · doi:10.1007/BF03014798
[30] Knopp, Konrad. Theorie und Anwendung der unendlichen Reihen. Zweite Auflage. Berlin: Julius Springer, 1924. English translation, London and Glasgow: Blackie & Son, 1928. Second English edition, 1948. New York: Hafner Publishing Co., reprint of 1948 edition, 1971.
[31] Landau, Edmund. Über eine trigonometrische Ungleichung. Math. Z. 37 (1933), 36. · JFM 59.0371.01 · doi:10.1007/BF01474559
[32] Love, A. E. H. Letter in Nature 58 (1898), 569-570. · JFM 29.0214.04 · doi:10.1038/058569b0
[33] Love, A. E. H. Letter in Nature 59 (1898-1899), 200-201. · JFM 30.0240.05 · doi:10.1038/059200c0
[34] Love, A. E. H. Letter in Nature 60 (1899), 100-101. · doi:10.1038/060100d0
[35] Michelson, Albert A. Letter in Nature 58 (1898), 544-545. · JFM 29.0214.03 · doi:10.1038/058544b0
[36] Michelson, Albert A. Letter in Nature 59 (1898-1899), 200. · JFM 30.0240.03 · doi:10.1038/059200a0
[37] Michelson, Albert A., & S. W. Stratton. A new harmonic analyser. Philosophical Magazine (5) 45 (1898), 85-91. · JFM 29.0652.01
[38] Moore, C. N. Note on Gibbs’ phenomenon. Bull. Amer. Math. Soc. 31 (1925), 417-419. · JFM 51.0009.05 · doi:10.1090/S0002-9904-1925-04080-X
[39] Newman, Francis W. On the values of a periodic function at certain limits. Cambridge & Dublin Math. J. 3 (1848), 108-112.
[40] Poincaré, Henri. Letter to A. A. Michelson. Nature 60 (1899), 52.
[41] Turán, Paul. Über die partiellen Summen der Fourierreihen. J. London Math. Soc. 13 (1938), 278-282. · Zbl 0020.01403 · doi:10.1112/jlms/s1-13.4.278
[42] Weyl, Hermann. Die Gibbsche Erscheinung in der Theorie der Kugelfunktionen. Rend. Circ. Math. Palermo 29 (1910), 308-323. Also in Gesammelte Abhandlungen. Berlin-Heidelberg-New York: Springer-Verlag, 1968, Vol. I, 305-320. · JFM 41.0528.01 · doi:10.1007/BF03014071
[43] Weyl, Hermann. Über die Gibbssche Erscheinung und verwandte Konvergenzphänomene. Rend. Circ. Mat. Palermo 30 (1910), 377-407. Also in Gesammelte Abhandlungen. Berlin-Heidelberg-New York: Springer-Verlag, 1968, Vol. I, 321-353. · JFM 41.0528.02 · doi:10.1007/BF03014883
[44] Wilbraham, Henry. On a certain periodic function. Cambridge & Dublin Math. J. 3 (1848), 198-201.
[45] Wilton, J. R. The Gibbs phenomenon in series of Schlömilch type. Messenger of Math. 56 (1926-1927), 175-181.
[46] Wilton, J. R. The Gibbs phenomenon in Fourier-Bessel series. J. reine angew. Math. 159 (1928), 144-153. · JFM 54.0320.01 · doi:10.1515/crll.1928.159.144
[47] Zalcwasser, Zygmunt. Sur le phénomène de Gibbs dans la théorie des séries de Fourier des fonctions continues. Fund. Math. 12 (1928), 126-151. · JFM 54.0308.01
[48] Zygmund, Antoni. Trigonometrical series. Warszawa-Lwów: Monografje Matematyczne, Vol. V., 1935. · Zbl 0011.01703
[49] Zygmund, Antoni. Trigonometric series. Second Edition, Volume I. Cambridge, England: Cambridge University Press, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.