login
A026803
Number of partitions of n in which the least part is 10.
18
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 10, 11, 13, 14, 17, 18, 21, 23, 27, 29, 34, 37, 43, 47, 54, 59, 68, 74, 85, 93, 106, 116, 132, 145, 164, 180, 203, 223, 252, 276, 310, 341, 382, 420, 470, 516, 576, 633, 706, 775, 863
OFFSET
1,30
COMMENTS
In general, if g>=1 and g.f. = x^g * Product_{m>=g} 1/(1-x^m), then a(n,g) ~ Pi^(g-1) * (g-1)! * exp(Pi*sqrt(2*n/3)) / (2^((g+3)/2) * 3^(g/2) * n^((g+1)/2)) ~ p(n) * Pi^(g-1) * (g-1)! / (6*n)^((g-1)/2), where p(n) is the partition function A000041(n). - Vaclav Kotesovec, Jun 02 2018
FORMULA
G.f.: x^10 * Product_{m>=10} 1/(1-x^m).
a(n) ~ exp(Pi*sqrt(2*n/3)) * 35*sqrt(2)*Pi^9 / (3*n^(11/2)). - Vaclav Kotesovec, Jun 02 2018
G.f.: Sum_{k>=1} x^(10*k) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 25 2020
MAPLE
seq(coeff(series(x^10/mul(1-x^(m+10), m = 0..85), x, n+1), x, n), n = 1..80); # G. C. Greubel, Nov 03 2019
MATHEMATICA
Rest@CoefficientList[Series[x^10/QPochhammer[x^10, x], {x, 0, 80}], x] (* G. C. Greubel, Nov 03 2019 *)
PROG
(PARI) my(x='x+O('x^80)); concat(vector(9), Vec(x^10/prod(m=0, 85, 1-x^(m+10)))) \\ G. C. Greubel, Nov 03 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); [0, 0, 0, 0, 0, 0, 0, 0, 0] cat Coefficients(R!( x^10/(&*[1-x^(m+10): m in [0..85]]) )); // G. C. Greubel, Nov 03 2019
(Sage)
def A026803_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^10/product((1-x^(m+10)) for m in (0..85)) ).list()
a=A026803_list(71); a[1:] # G. C. Greubel, Nov 03 2019
CROSSREFS
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2 -- multigraphs with at least one pair of parallel edges, but loops forbidden), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800 (g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
Sequence in context: A264593 A026828 A025153 * A286041 A027192 A194255
KEYWORD
nonn,easy
EXTENSIONS
More terms from Arlin Anderson (starship1(AT)gmail.com), Apr 12 2001
STATUS
approved