OFFSET
1,1
COMMENTS
The largest member 'c' of the Pythagorean triples (a,b,c) ordered by increasing c.
If c^2 = a^2 + b^2 (a < b < c) then c^2 = (n^2 + m^2)/2 with n = b - a, m = b + a. - Zak Seidov, Mar 03 2011
Numbers n such that A083025(n) > 0, i.e., n is divisible by at least one prime of the form 4k+1. - Max Alekseyev, Oct 24 2008
A number appears only once in the sequence if and only if it is divisible by exactly one prime of the form 4k+1 with multiplicity one (cf. A084645). - Jean-Christophe Hervé, Nov 11 2013
If c^2 = a^2 + b^2 with a and b > 0, then a <> b: the sum of 2 equal squares cannot be a square because sqrt(2) is not rational. - Jean-Christophe Hervé, Nov 11 2013
REFERENCES
W. L. Schaaf, Recreational Mathematics, A Guide To The Literature, "The Pythagorean Relationship", Chapter 6 pp. 89-99 NCTM VA 1963.
W. L. Schaaf, A Bibliography of Recreational Mathematics, Vol. 2, "The Pythagorean Relation", Chapter 6 pp. 108-113 NCTM VA 1972.
W. L. Schaaf, A Bibliography of Recreational Mathematics, Vol. 3, "Pythagorean Recreations", Chapter 6 pp. 62-6 NCTM VA 1973.
LINKS
Zak Seidov and T. D. Noe, Table of n, a(n) for n = 1..10000 (Zak Seidov entered the first 1981 terms).
Anonymous, Links to Pythagorean Theorem Proofs
H. Bottomley, Pythagoras's theorem (animated proof)
Dept. of Pure Math., Univ. Sheffield, Animated Proof of Pythagoras Theorem [Broken link?]
T. Eveilleau, More Animated proofs of the Pythagorean theorem (Text in French) [broken link]
T. Eveilleau, An Experimental Illustration of the Pythagorean Theorem, (requires a flash player)
Kangourou Math Website, L'animation du theoreme de Pythagore
Ron Knott, Pythagorean Triples and Online Calculators
I. Kobayashi et al., Pythagorean Theorem (Java Interactive Proofs, Applications and Explorations)
Mathematical Database, Poster, 7 Ways to prove the Pythagorean Theorem
B. Richmond, The Pythagorean Theorem
M. Shepperd, Web Resources on Pythagoras' Theorem
J. S. Silverman, A Friendly Introduction to Number Theory, Chapters 1 to 6 (see Chapters 2 and 3).
G. Villemin's Almanach of Numbers, Triangles & Triplets de Pythagore
Eric Weisstein's World of Mathematics, Pythagorean Triple
MATHEMATICA
max = 120; hypotenuseQ[n_] := For[k = 1, True, k++, p = Prime[k]; Which[Mod[p, 4] == 1 && Divisible[n, p], Return[True], p > n, Return[False]]]; hypotenuses = Select[Range[max], hypotenuseQ]; red[c_] := {a, b, c} /. {ToRules[ Reduce[0 < a <= b && a^2 + b^2 == c^2, {a, b}, Integers]]}; A009000 = Flatten[red /@ hypotenuses, 1][[All, -1]] (* Jean-François Alcover, May 23 2012, after Max Alekseyev *)
PROG
(PARI) list(lim)=my(v=List(), m2, s2, h2, h); for(middle=4, lim-1, m2=middle^2; for(small=1, middle, s2=small^2; if(issquare(h2=m2+s2, &h), if(h>lim, break); listput(v, h)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 23 2017
(PARI) list(lim) = {my(lh = List()); for(u = 2, sqrtint(lim), for(v = 1, u, if (u^2+v^2 > lim, break); if ((gcd(u, v) == 1) && (0 != (u-v)%2), for (i = 1, lim, if (i*(u^2+v^2) > lim, break); /* if (u^2 - v^2 < 2*u*v, w = [i*(u^2 - v^2), i*2*u*v, i*(u^2+v^2)], w = [i*2*u*v, i*(u^2 - v^2), i*(u^2+v^2)]); */ listput(lh, i*(u^2+v^2)); ); ); ); ); vecsort(Vec(lh)); } \\ Michel Marcus, Apr 10 2021
(Python)
from math import isqrt
def aupto(limit):
s = [i*i for i in range(1, limit+1)]
s2 = sorted(a+b for i, a in enumerate(s) for b in s[i+1:])
return [isqrt(k) for k in s2 if k in s]
print(aupto(120)) # Michael S. Branicky, May 10 2021
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved