\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

Boolean function classes with high nonlinearity

  • *Corresponding author: Manish Garg

    *Corresponding author: Manish Garg

The first author is supported by [Council of Scientific and Industrial Research (CSIR)]

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In 2020, Liu (Q. Liu, The lower bounds on the second-order nonlinearity of three classes of Boolean functions, Advances in Mathematics of Communications, AIMS (2021), Doi: 10.3934/amc.2020136) studied the second-order nonlinearity of three classes of Boolean functions, which have high first-order nonlinearity. Liu gave bounds on the first-order nonlinearity of these classes based on some experimental results using Magma. This article provides theoretical proof for computing the lower bounds on the first-order nonlinearity of two classes of Boolean functions out of three. Our bounds are identical to the bounds obtained by Liu experimentally.

    Mathematics Subject Classification: Primary: 94A60, 94D10; Secondary: 06E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. Carlet, The Complexity of Boolean Functions from Cryptographic Viewpoint, Dagstuhl Seminar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2006.
    [2] C. Carlet, Recursive lower bounds on the nonlinearity profile of Boolean functions and their applications, IEEE Trans. Inform. Theory, 54 (2008), 1262-1272.  doi: 10.1109/TIT.2007.915704.
    [3] C. Carlet, Vectorial Boolean functions for cryptography, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, (2010), 398-470. doi: 10.1017/CBO9780511780448.012.
    [4] C. Carlet, Boolean functions for cryptography and error correcting codes, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, (2010), 257-397. doi: 10.1017/CBO9780511780448.011.
    [5] C. CarletBoolean Functions for Cryptography and Coding Theory, Cambridge University Press, Cambridge, 2021.  doi: 10.1017/9781108606806.
    [6] C. CarletD. K. DalaiK. C. Gupta and S. Maitra, Algebraic immunity for cryptographically significant Boolean functions: analysis and construction, IEEE Trans. Inform. Theory, 52 (2006), 3105-3121.  doi: 10.1109/TIT.2006.876253.
    [7] H. Dobbertin, One-to-one highly nonlinear power functions on GF(2n), Appl. Algebra Engrg. Comm. Comput., 9 (1998), 139-152.  doi: 10.1007/s002000050099.
    [8] R. Fourquet and C. Tavernier, An improved list decoding algorithm for the second order Reed-Muller codes and its applications, Des. Codes Cryptogr., 49 (2008), 323-340.  doi: 10.1007/s10623-008-9184-8.
    [9] S. GangopadhyayS. Sarkar and R. Telang, On the lower bounds of the second order nonlinearities of some Boolean functions, Inf. Sci., 180 (2010), 266-273.  doi: 10.1016/j.ins.2009.09.006.
    [10] Q. Gao and D. Tang, A lower bound on the second-order nonlinearity of the generalized Maiorana-McFarland Boolean functions, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 101 (2018), 2397-2401. 
    [11] M. Garg and S. Gangopadhyay, A lower bound of the second-order nonlinearities of Boolean bent functions, Fund. Inform., 111 (2011), 413-422.  doi: 10.3233/FI-2011-570.
    [12] R. Gode and S. Gangopadhyay, On higher order nonlinearities of Monomial Partial Spreads type Boolean functions, J. Comb. Inf. Syst. Sci., 35 (2010), 341-360. 
    [13] J. W. P. Hirschfeld, Ovals in desarguesian planes of even order, Ann. Mat. Pura Appl., 1 (1975), 79-89.  doi: 10.1007/BF02410598.
    [14] R. Lidl and  H. NiederreiterFinite Fields, 2nd edition, Cambridge University Press, Cambridge, 1996. 
    [15] Q. Liu, The lower bounds on the second-order nonlinearity of three classes of Boolean functions, Adv. Math. Commun., 17 (2023), 418-430.  doi: 10.3934/amc.2020136.
    [16] A. Maschietti, Difference sets and hyperovals, Des. Codes Cryptogr., 14 (1998), 89-98.  doi: 10.1023/A:1008264606494.
    [17] B. Segre, Ovali e curve $ \sigma$ nei piani di Galois di caratteristica due, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 32 (1962), 785-790. 
    [18] B. K. Singh, On third-order nonlinearity of biquadratic monomial Boolean functions, Int. J. Eng. Math., 2014 (2014), 1-7. 
    [19] G. Sun and C. Wu, The lower bound on the second-order nonlinearity of a class of Boolean functions with high nonlinearity, Appl. Algebra Engrg. Comm. Comput., 22 (2011), 37-45.  doi: 10.1007/s00200-010-0136-y.
    [20] D. TangH. YanZ. Zhou and X. Zhang, A new lower bound on the second-order nonlinearity of a class of monomial bent functions, Cryptogr. Commun., 12 (2020), 77-83.  doi: 10.1007/s12095-019-00360-y.
    [21] Z. TuX. Zeng and L. Hu, Several classes of complete permutation polynomials, Finite Fields Appl., 25 (2014), 182-193.  doi: 10.1016/j.ffa.2013.09.007.
    [22] Z. X. WanGeometry of Classical Groups Over Finite Fields, 2nd edition, Science Press, Beijing, 2002. 
    [23] Q. Wang and T. Johansson, A note on fast algebraic attacks and higher order nonlinearities, Information Security and Cryptology, Springer Berlin Heidelberg, Berlin, Heidelberg, 6584 (2011), 404-414.  doi: 10.1007/978-3-642-21518-6_28.
  • 加载中
SHARE

Article Metrics

HTML views(2713) PDF downloads(768) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return