\`x^2+y_1+z_12^34\`
Article Contents
Article Contents

The lower bounds on the second-order nonlinearity of three classes of Boolean functions

  • * Corresponding author: Qian Liu

    * Corresponding author: Qian Liu

This work was supported by Educational Research Projects of Young and Middle-aged Teachers in Fujian Province (No. JAT200033) and the Talent Fund project of Fuzhou University (No. 0030510858)

Abstract / Introduction Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • In this paper, by calculating the lower bounds on the nonlinearity of the derivatives of the following three classes of Boolean functions, we provide the tight lower bounds on the second-order nonlinearity of these Boolean functions: (1) $ f_1(x) = Tr_1^n(x^{2^{r+1}+2^r+1}) $, where $ n = 2r+2 $ with even $ r $; (2) $ f_2(x) = Tr_1^n(\lambda x^{2^{2r}+2^{r+1}+1}) $, where $ \lambda \in \mathbb{F}_{2^r}^* $ and $ n = 4r $ with even $ r $; (3) $ f_3(x,y) = yTr_1^n(x^{2^r+1})+Tr_1^n(x^{2^r+3}) $, where $ (x, y)\in \mathbb{F}_{2^n}\times \mathbb{F}_2 $, $ n = 2r $ with odd $ r $. The results show that our bounds are better than previously known lower bounds in some cases.

    Mathematics Subject Classification: Primary: 94A60, 11T71; Secondary: 06E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  The Walsh spectrum of $ f $

    $ W_f(\omega) $ Number of $ \omega $
    0 $ 2^n-2^{n-k} $
    $ 2^{\frac{n+k}{2}} $ $ 2^{n-k-1}+(-1)^{f(0)}2^{\frac{n-k-2}{2}} $
    $ -2^{\frac{n+k}{2}} $ $ 2^{n-k-1}-(-1)^{f(0)}2^{\frac{n-k-2}{2}} $
     | Show Table
    DownLoad: CSV

    Table 2.  Comparison of the lower bound on second-order nonlinearity with the known results

    $ n $ bound in [19] bound in [9] bound in [11] bound in [15] Our new bound in Theorem 3.6
    8 62 63 64 38 80
    16 28615 24561 28672 26974 29815
    24 8125467 7339906 8126464 8017875 8202293
    32 2130690153 2013264900 2130706432 2123757059 2135604974
    40 548681810337 532575936520 548682072064 548237313548 548996316833
     | Show Table
    DownLoad: CSV

    Table 3.  Comparison of the lower bound on second-order nonlinearity with the known results for odd $ r $

    $ r $ 1 3 5 7 9 11 13
    bound in [4] 0 19 662 13487 238971 4008935 65625942
    Our new bound in Theorem 3.9 1 32 763 14309 245641 4062737 66058274
     | Show Table
    DownLoad: CSV
  • [1] A. CanteautP. Charpin and G. M. Kyureghyan, A new class of monomial bent functions, Finite Fields and Their Applications, 14 (2008), 221-241.  doi: 10.1016/j.ffa.2007.02.004.
    [2] C. CarletBoolean Functions for Cryptography and Coding Theory, Cambridge University Press, Cambridge, 2020.  doi: 10.1017/9781108606806.
    [3] C. Carlet, Boolean functions for cryptography and error-correcting codes, in Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, Cambridge, (2010), 257-397. doi: 10.1017/CBO9780511780448.
    [4] C. Carlet, Recursive lower bounds on the nonlinearity profile of Boolean functions and their applications, IEEE Transactions on Information Theory, 54 (2008), 1262-1272.  doi: 10.1109/TIT.2007.915704.
    [5] G. Cohen, I. Honkala and S. Litsyn, Covering Codes, North-Holland, Amsterdam, 1997.
    [6] H. DobbertinG. LeanderA. CanteautC. CarletP. Felke and P. Gaborit, Construction of bent functions via Niho power functions, Journal of Combinatorial Theory, Series A, 113 (2006), 779-798.  doi: 10.1016/j.jcta.2005.07.009.
    [7] I. Dumer, G. Kabatiansky and C. Tavernier, List decoding of Reed-Muller codes up to the Johnson bound with almost linear complexity, 2006 IEEE International Symposium on Information Theory, (2006), 138-142. doi: 10.1109/ISIT.2006.261690.
    [8] R. Fourquet and C. Tavernier, An improved list decoding algorithm for the second order Reed-Muller codes and its applications, Designs Codes and Cyptography, 49 (2008), 323-340.  doi: 10.1007/s10623-008-9184-8.
    [9] S. GangopadhyayS. Sarkar and R. Telang, On the lower bounds of the second order nonlinearities of some Boolean functions, Information Sciences, 180 (2010), 266-273.  doi: 10.1016/j.ins.2009.09.006.
    [10] Q. Gao and D. Tang, A lower bound on the second-order nonlinearity of the generalized Maiorana-McFarland Boolean functions, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, E101.A (2018), 2397-2401.  doi: 10.1587/transfun.E101.A.2397.
    [11] R. Gode and S. Gangopadhyay, On second order nonlinearity of cubic monomial Boolean functions., Available at: http://eprint.iacr.org/2009/502.pdf.
    [12] G. Kabatiansky and C. Tavernier, List decoding of second order Reed-Muller codes, Proceedings of the Eighteen International Symposium of Communication Theory and Applications, Ambleside, UK, 2005.
    [13] L. R. Knudsen and M. J. B. Robshaw, Non-linear approximations in linear cryptanalysis, Advances in Cryptology-Eurocrypt, Springer, Berlin, 1996, 224-236. doi: 10.1007/3-540-68339-9_20.
    [14] G. Leander, Monomial bent functions, IEEE Transactions on Information Theory, 52 (2006), 738-743.  doi: 10.1109/TIT.2005.862121.
    [15] X. L. LiY. P. Hu and J. T. Gao, Lower bounds on the second order nonlinearity of Boolean functions, International Journal of Foundations of Computer Science, 22 (2011), 1331-1349.  doi: 10.1142/S012905411100874X.
    [16] R. Lidl and  H. NiederreiterFinite Fields, Cambridge University Press, Cambridge, 1997. 
    [17] F. J. Macwilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amesterdam, 1977.
    [18] S. Sarkar and S. Gangopadhyay, On the second order nonlinearity of a cubic Maiorana-Mcfarland bent function, Finite Fields Appl., 2009.
    [19] G. H. Sun and C. K. Wu, The lower bounds on the second order nonlinearity of three classes of Boolean functions with high nonlinearity, Information Sciences, 179 (2009), 267-278.  doi: 10.1016/j.ins.2008.10.002.
    [20] G. H. Sun and C. K. Wu, The lower bound on the second-order nonlinearity of a class of Boolean functions with high nonlinearity, Applicable Algebra in Engineering Communication and Computing, 22 (2011), 37-45.  doi: 10.1007/s00200-010-0136-y.
    [21] D. TangC. Carlet and X. H. Tang, On the second-order nonlinearities of some bent functions, Information Sciences, 223 (2013), 322-330.  doi: 10.1016/j.ins.2012.08.024.
    [22] D. TangH. D. YanZ. C. Zhou and X. S. Zhang, A new lower bound on the second-order nonlinearity of a class of monomial bent functions, Cryptography and Communications, 12 (2020), 77-83.  doi: 10.1007/s12095-019-00360-y.
    [23] H. D. Yan and D. Tang, Improving lower bounds on the second-order nonlinearity of three classes of Boolean functions, Discrete Mathematics, 343 (2020), 11698. doi: 10.1016/j.disc.2019.111698.
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(2896) PDF downloads(667) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return