A multireference second-order perturbation theory using a restricted active space self-consistent field wave function as reference (RASPT2/RASSCF) is described. This model is particularly effective for cases where a chemical system requires a balanced orbital active space that is too large to be addressed by the complete active space self-consistent field model with or without second-order perturbation theory (CASPT2 or CASSCF, respectively). Rather than permitting all possible electronic configurations of the electrons in the active space to appear in the reference wave function, certain orbitals are sequestered into two subspaces that permit a maximum number of occupations or holes, respectively, in any given configuration, thereby reducing the total number of possible configurations. Subsequent second-order perturbation theory captures additional dynamical correlation effects. Applications of the theory to the electronic structure of complexes involved in the activation of molecular oxygen by mono- and binuclear copper complexes are presented. In the mononuclear case, RASPT2 and CASPT2 provide very similar results. In the binuclear cases, however, only RASPT2 proves quantitatively useful, owing to the very large size of the necessary active space.

1.
L.
Gagliardi
and
B. O.
Roos
,
Nature (London)
433
,
848
(
2005
).
2.
L.
Gagliardi
,
M. C.
Heaven
,
J. W.
Krogh
, and
B. O.
Roos
,
J. Am. Chem. Soc.
127
,
86
(
2005
).
3.
L.
Gagliardi
,
P.
Pyykkö
, and
B. O.
Roos
,
Phys. Chem. Chem. Phys.
7
,
2415
(
2005
).
4.
D.
Hagberg
,
G.
Karlström
,
B. O.
Roos
, and
L.
Gagliardi
,
J. Am. Chem. Soc.
127
,
14250
(
2005
).
5.
L.
Gagliardi
,
Theor. Chim. Acta
116
,
307
(
2006
).
6.
G.
La Macchia
,
M.
Brynda
, and
L.
Gagliardi
,
Angew. Chem., Int. Ed.
45
,
6210
(
2006
).
7.
B. O.
Roos
and
L.
Gagliardi
,
Inorg. Chem.
45
,
803
(
2006
).
8.
P.
Celani
,
H.
Stoll
,
H. J.
Werner
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2369
(
2004
).
9.
K.
Dyall
,
J. Chem. Phys.
102
,
4909
(
1995
).
10.
M. W.
Schmidt
and
M. S.
Gordon
,
Annu. Rev. Phys. Chem.
49
,
233
(
1998
).
11.
H. A.
Witek
,
H.
Nakano
, and
K.
Hirao
,
J. Chem. Phys.
118
,
8197
(
2003
).
12.
C.
Angeli
,
M.
Pastore
, and
R.
Cimiraglia
,
Theor. Chim. Acta
117
,
743
(
2007
).
13.
B. O.
Roos
, in
Radiation Induced Molecular Phenomena in Nucleic Acids
, edited by
M. K.
Shukla
and
J.
Leszczynski
(
Springer
,
Amsterdam, The Netherlands
,
2008
), pp.
125
156
.
14.
L.
Gagliardi
and
B. O.
Roos
,
Chem. Soc. Rev.
36
,
893
(
2007
).
15.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
16.
B. O.
Roos
, in
Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry-II
, edited by
K. P.
Lawley
(
Wiley
,
Chichester, England
,
1987
), Chap. 69, p.
399
.
17.
K.
Pierloot
, in
Nondynamic Correlation Effects in Transition Metal Coordination Compounds
, edited by
T. R.
Cundari
(
Dekker
,
New York
,
2000
), Chap. 5, pp.
123
158
.
18.
19.
P. E. M.
Siegbahn
,
A.
Heiberg
,
B. O.
Roos
, and
B.
Levy
,
Phys. Scr.
21
,
323
(
1980
).
20.
I.
Hubač
,
P.
Mach
, and
S.
Wilson
,
Int. J. Quantum Chem.
89
,
198
(
2002
).
21.
B. O.
Roos
,
P.
Linse
,
P. E. M.
Siegbahn
, and
M. R. A.
Blomberg
,
Chem. Phys.
66
,
197
(
1982
).
22.
K.
Andersson
,
P.-Å.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
23.
K.
Andersson
,
P.-Å.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
(
1992
).
24.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
25.
P.-Å.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
,
J. Phys. Chem.
94
,
5477
(
1990
).
26.
K. D.
Karlin
and
Y.
Gultneh
,
Prog. Inorg. Chem.
35
,
219
(
1987
).
27.
E. I.
Solomon
and
M. D.
Lowery
,
Science
259
,
1575
(
1993
).
28.
K. D.
Karlin
and
Z.
Tyeklar
,
Adv. Inorg. Biochem.
9
,
123
(
1994
).
29.
P. L.
Holland
and
W. B.
Tolman
,
Coord. Chem. Rev.
192
,
855
(
1999
).
30.
N.
Duran
and
E.
Esposito
,
Appl. Catal., B
28
,
83
(
2000
).
32.
C.
Limberg
,
Angew. Chem., Int. Ed.
42
,
5932
(
2003
).
33.
L. M.
Mirica
,
X.
Ottenwaelder
, and
T. D. P.
Stack
,
Angew. Chem., Int. Ed.
104
,
1013
(
2004
).
34.
E. A.
Lewis
and
W. B.
Tolman
,
Chem. Rev.
104
,
1047
(
2004
).
35.
T.
Punniyamurthy
,
S.
Velusamy
, and
J.
Iqbal
,
Chem. Rev.
105
,
2329
(
2005
).
36.
S.
Itoh
,
Curr. Opin. Chem. Biol.
10
,
115
(
2006
).
37.
J. P.
Klinman
,
J. Biol. Chem.
281
,
3013
(
2006
).
38.
J. M.
Bollinger
,
Curr. Opin. Chem. Biol.
11
,
151
(
2007
).
39.
C. J.
Cramer
and
W. B.
Tolman
,
Acc. Chem. Res.
40
,
601
(
2007
).
40.
C. J.
Cramer
,
B. A.
Smith
, and
W. B.
Tolman
,
J. Am. Chem. Soc.
118
,
11283
(
1996
).
41.
M.
Flock
and
K.
Pierloot
,
J. Phys. Chem. A
103
,
95
(
1999
).
42.
C. J.
Cramer
,
W. B.
Tolman
,
K. H.
Theopold
, and
A. L.
Rheingold
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
3635
(
2003
).
43.
P. E. M.
Siegbahn
,
J. Biol. Inorg. Chem.
8
,
577
(
2003
).
44.
B. F.
Gherman
and
C. J.
Cramer
,
Inorg. Chem.
43
,
7281
(
2004
).
45.
N. W.
Aboelella
,
S.
Kryatov
,
B. F.
Gherman
,
W. W.
Brennessel
,
V. G. J.
Young
, Jr.
,
R.
Sarangi
,
E.
Rybak-Akimova
,
K. O.
Hodgson
,
B.
Hedman
,
E. I.
Solomon
,
C. J.
Cramer
, and
W. B.
Tolman
,
J. Am. Chem. Soc.
126
,
16896
(
2004
).
46.
C. R.
Kinsinger
,
B. F.
Gherman
,
L.
Gagliardi
, and
C. J.
Cramer
,
J. Biol. Inorg. Chem.
10
,
778
(
2005
).
47.
M. F.
Rode
and
H.
Werner
,
Theor. Chim. Acta
114
,
309
(
2005
).
48.
B. F.
Gherman
,
D. E.
Heppner
,
W. B.
Tolman
, and
C. J.
Cramer
,
J. Biol. Inorg. Chem.
11
,
197
(
2006
).
49.
C. J.
Cramer
,
M.
Wloch
,
P.
Piecuch
,
C.
Puzzarini
, and
L.
Gagliardi
,
J. Phys. Chem. A
110
,
1991
(
2006
).
50.
C. J.
Cramer
,
A.
Kinal
,
M.
Wloch
,
P.
Piecuch
, and
L.
Gagliardi
,
J. Phys. Chem. A
110
,
11557
(
2006
).
51.
B. F.
Gherman
and
C. J.
Cramer
Coord. Chem. Rev.
(in press).
52.
C. J.
Cramer
,
J. R.
Gour
,
A.
Kinal
,
M.
Wloch
,
P.
Piecuch
,
A. R. Moughal
Shahi
, and
L.
Gagliardi
,
J. Phys. Chem. A
112
,
3754
(
2008
).
53.
V.
Bonacic-Koutecky
,
J.
Koutecky
, and
J.
Michl
,
Angew. Chem., Int. Ed.
26
,
170
(
1987
).
54.
C. J.
Cramer
,
Essentials of Computational Chemistry: Theories and Models
, 2nd ed. (
Wiley
,
Chichester
,
2004
).
55.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
56.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
57.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
58.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
K. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
59.
Institut für Theoretische Chemie, Universität Stuttgart, http://www.theochem.uni-stuttgart.de/
60.
D.
Andrae
,
U.
Häussermann
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
Theor. Chim. Acta
77
,
123
(
1990
).
61.
W. J.
Hehre
,
L.
Radom
,
P. v. R.
Schleyer
, and
J. A.
Pople
,
Molecular Orbital Theory
(
Wiley
,
New York
,
1986
).
62.
P.-O.
Widmark
,
P.-Å.
Malmqvist
, and
B. O.
Roos
,
Theor. Chim. Acta
77
,
291
(
1990
).
63.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
,
J. Phys. Chem. A
109
,
2851
(
2005
).
64.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
,
J. Phys. Chem. A
109
,
6575
(
2005
).
65.
K.
Andersson
and
B. O.
Roos
,
Chem. Phys. Lett.
191
,
507
(
1992
).
66.
M.
Merchán
,
R.
Pou-Amérigo
, and
B. O.
Roos
,
Chem. Phys. Lett.
252
,
405
(
1996
).
67.
G.
Ghigo
,
B. O.
Roos
, and
P.-Å.
Malmqvist
,
Chem. Phys. Lett.
396
,
142
(
2004
).
68.
K. H.
Marti
,
I. M.
Ondik
,
G.
Moritz
, and
M.
Reiher
,
J. Chem. Phys.
128
,
014104
(
2008
).
69.
J. L.
Lewin
,
D. E.
Heppner
, and
C. J.
Cramer
,
J. Biol. Inorg. Chem.
12
,
1221
(
2007
).
You do not currently have access to this content.