A multireference perturbation method is formulated, that uses an optimized partitioning. The zeroth-order energies are chosen in a way that guarantees vanishing the first neglected term in the perturbational ansatz for the wave function, Ψ(n)=0. This procedure yields a family of zeroth-order Hamiltonians that allows for systematic control of errors arising from truncating the perturbative expansion of the wave function. The second-order version of the proposed method, denoted as MROPT(2), is shown to be (almost) size-consistent. The slight extensivity violation is shown numerically. The total energies obtained with MROPT(2) are similar to these obtained using the multireference configuration interaction method with Davidson-type corrections. We discuss connections of the MROPT(2) method to related approaches, the optimized partitioning introduced by Szabados and Surján and the linearized multireference coupled-cluster method. The MROPT(2) method requires using state-optimized orbitals; we show on example of N2 that using Hartree–Fock orbitals for some excited states may lead to nonphysical results.

1.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
2.
P. S.
Epstein
,
Phys. Rev.
28
,
695
(
1926
).
3.
R. K.
Nesbet
,
Proc. R. Soc. London, Ser. A
230
,
312
(
1955
).
4.
A. T.
Amos
,
J. Chem. Phys.
52
,
603
(
1970
).
5.
K. G.
Dyall
,
J. Chem. Phys.
102
,
4909
(
1995
).
6.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
,
Chem. Phys. Lett.
317
,
472
(
2000
).
7.
J. P.
Finley
,
J. Chem. Phys.
108
,
1081
(
1998
).
8.
J. P.
Finley
and
H. A.
Witek
,
J. Chem. Phys.
112
,
3958
(
2000
).
9.
Y.-K.
Choe
,
J. P.
Finley
,
H.
Nakano
, and
K.
Hirao
,
J. Chem. Phys.
113
,
7773
(
2000
).
10.
Á.
Szabados
and
P. R.
Surján
,
Chem. Phys. Lett.
308
,
303
(
1999
).
11.
P. R.
Surján
and
Á.
Szabados
,
J. Chem. Phys.
112
,
4438
(
2000
).
12.
J. P.
Finley
,
R. K.
Chaudhuri
, and
K. F.
Freed
,
J. Chem. Phys.
103
,
4990
(
1995
).
13.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
14.
J. P.
Finley
,
J. Chem. Phys.
109
,
7725
(
1998
).
15.
J. P.
Finley
,
J. Chem. Phys.
112
,
6997
(
2000
).
16.
E.
Rosta
and
P. R.
Surján
,
J. Chem. Phys.
116
,
878
(
2002
).
17.
S. R.
Gwaltney
and
M.
Head-Gordon
,
Chem. Phys. Lett.
323
,
21
(
2000
).
18.
S.
Hirata
,
M.
Nooijen
,
I.
Grabowski
, and
R. J.
Bartlett
,
J. Chem. Phys.
114
,
3919
(
2001
).
19.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
20.
P. R.
Surján
,
Á.
Szabados
, and
Z.
Szekeres
,
Int. J. Quantum Chem.
90
,
1309
(
2002
).
21.
E.
Feenberg
,
Phys. Rev.
103
,
1116
(
1956
).
22.
P.
Goldhammer
and
E.
Feenberg
,
Phys. Rev.
101
,
1233
(
1955
).
23.
J. P.
Finley
,
R. K.
Chaudhuri
, and
K. F.
Freed
,
Phys. Rev. A
54
,
343
(
1996
).
24.
W. D.
Laidig
and
R. J.
Bartlett
,
Chem. Phys. Lett.
104
,
424
(
1984
).
25.
W. D.
Laidig
,
P.
Saxe
, and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
887
(
1987
).
26.
H. A. Witek, H. Nakano, and K. Hirao, J. Comput. Chem. (to be published).
27.
R. J.
Bartlett
and
G. D.
Purvis
,
Int. J. Quantum Chem.
14
,
561
(
1978
).
28.
R.
Ahlrichs
,
Comput. Phys. Commun.
17
,
31
(
1979
).
29.
F. J.
Dyson
,
Phys. Rev.
75
,
1736
(
1949
).
30.
G. H. Golub and C. F. Van Loan, Matrix computations (Johns Hopkins Press, Baltimore, 1989).
31.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
,
Int. J. Quantum Chem.
S13
,
225
(
1979
).
32.
P.
Pulay
,
J. Comput. Chem.
3
,
556
(
1982
).
33.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
34.
P. E. M.
Siegbahn
,
Chem. Phys. Lett.
55
,
386
(
1978
).
35.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
36.
G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966).
37.
W.
Haugen
and
M.
Traetteberg
,
Acta Chem. Scand.
20
,
1726
(
1966
).
38.
P.-O.
Widmark
,
P. Å.
Malmqvist
, and
B. O.
Roos
,
Theor. Chim. Acta
77
,
291
(
1990
).
39.
K.
Pierloot
,
B.
Dumez
,
P.-O.
Widmark
, and
B. O.
Roos
,
Theor. Chim. Acta
90
,
87
(
1995
).
40.
H.
Lischka
,
R.
Shepard
,
F. B.
Brown
, and
I.
Shavitt
,
Int. J. Quantum Chem.
S15
,
91
(
1981
).
41.
R.
Shepard
et al.,
Int. J. Quantum Chem.
S22
,
149
(
1988
).
42.
H.
Lischka
et al.,
Phys. Chem. Chem. Phys.
3
,
664
(
2001
).
43.
H. Lischka, R. Shepard, I. Shavitt et al., COLUMBUS, an ab initio electronic structure program, release 5.8 (2001).
44.
J. E.
Douglas
,
B. S.
Rabinovitch
, and
F. S.
Looney
,
J. Chem. Phys.
23
,
315
(
1955
).
45.
A. J.
Merer
and
R. S.
Mulliken
,
Chem. Rev.
69
,
639
(
1969
).
46.
C.
Petrongolo
,
R. J.
Buenker
, and
S. D.
Peyerimhoff
,
J. Chem. Phys.
76
,
3655
(
1982
).
47.
L. E.
McMurchie
and
E. R.
Davidson
,
J. Chem. Phys.
67
,
5613
(
1977
).
48.
R.
Lindh
and
B. O.
Roos
,
Int. J. Quantum Chem.
35
,
813
(
1989
).
49.
L.
Serrano-Andrés
,
M.
Merchán
,
I.
Nebot-Gil
,
R.
Lindh
, and
B. O.
Roos
,
J. Chem. Phys.
98
,
3151
(
1993
).
50.
E. H.
van Veen
,
Chem. Phys. Lett.
41
,
540
(
1976
).
51.
W. H.
Flicker
,
O. A.
Mosher
, and
A.
Kuppermann
,
Chem. Phys. Lett.
36
,
56
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.