×

Forcing With Copies of Uncountable Ordinals. arXiv:2401.00302

Preprint, arXiv:2401.00302 [math.LO] (2023).
Summary: For a relational structure \({\mathbb X}\) we investigate the partial order \(\langle {\mathbb P} ({\mathbb X}) ,\subset \rangle\), where \({\mathbb P} ({\mathbb X}):=\{ f[X]: f\in \mathop{\rm Emb}\nolimits ({\mathbb X})\}\). Here we consider uncountable ordinals. Since \(\mathop{\rm sq}\nolimits {\mathbb P} (\alpha )\) is isomorphic to the direct product \(\prod _{i=1}^n (\mathop{\rm sq}\nolimits {\mathbb P} (\omega ^{\delta _i}))^{s_i}\), where \(\alpha = \omega ^{\delta _n}s_n+\dots +\omega ^{\delta _1}s_1+ m\) is the Cantor normal form for \(\alpha \), the analysis is reduced to the investigation of the posets of the form \({\mathbb P} (\omega ^{\delta })\). It turns out that, in ZFC, either the poset \(\mathop{\rm sq}\nolimits {\mathbb P} (\alpha )\) is \(\sigma\)-closed and completely embeds \(P(\omega )/\mathop{\rm Fin}\) and, hence, preserves \(\omega _1\) and forces \(|{\mathfrak c}|=|{\mathfrak h}|\), or, otherwise, completely embeds the algebra \(P(\lambda )/[\lambda ]^{<\lambda }\), for some regular \(\omega <\lambda \leq \mathop{\rm cf}\nolimits (\delta )\), and collapses \(\omega _2\) to \(\omega \). Regarding the Cantor normal form, the first case appears iff for each \(i\leq n\) we have \(\mathop{\rm cf}\nolimits (\delta _i)\leq \omega \), or \(\delta _i = \theta _i + \mathop{\rm cf}\nolimits (\delta _i )\), where \(\mathop{\mathrm{Ord}}\nolimits \ni\theta _i \geq \mathop{\rm cf}\nolimits (\delta _i ) >\mathop{\rm cf}\nolimits (\theta _i )=\omega \) and \(\theta _i =\lim _{n\rightarrow \omega }\delta _n\), where \(\mathop{\rm cf}\nolimits (\delta _n)=\mathop{\rm cf}\nolimits (\delta _i)\), for all \(n\in \omega \).

MSC:

06A05 Total orders
03E40 Other aspects of forcing and Boolean-valued models
03E35 Consistency and independence results
arXiv data are taken from the arXiv OAI-PMH API. If you found a mistake, please report it directly to arXiv.