×

Stability of mixed additive-quadratic and additive-Drygas functional equations. (English) Zbl 1434.39024

J. Chung [Aequationes Math. 90, No. 4, 799–808 (2016; Zbl 1353.39026)] studied the Hyers-Ulam stability of functional equations in restricted domains \(\Omega \subset X\times X\) satisfying the following condition. Let \((\gamma_j, \lambda_j) \in \mathbb{R}^2\) with \(\gamma_j^2+ \lambda_j^2\neq 0\) for all \(j = 1, 2, \dots, r\), and let for each \(p_j, q_j \in X,\ j = 1, 2, \dots, r\), there exists \(t \in X\) such that \[ \{(p_j + \gamma_j t, q_j + \lambda_jt) : j = 1, 2, \dots, r\} \subset \Omega.\tag{\(*\)} \]
In this paper, the authors investigate the Hyers-Ulam stability of mixed additive-quadratic and additive-Drygas functional equations \[ \begin{aligned} &2f(x + y) + f(x - y) - 3f(x) - 3f(y) = 0, \\ &2f(x + y) + f(x- y)-3f(x) -2f(y) - f(-y) = 0, \end{aligned} \] in restricted domains \(\Omega \subset X\times X\) satisfying the above condition.
By using the Baire category theorem, they prove the stability of the above functional equations on restricted domains of the form \(H^2\cap\{(x, y) \in X^2 : \|x\|+\|y\|\geq d\}\) with \(d > 0\), where \(H\) is a subset of \(X\) such that \(H^c=X\setminus H\) is of the first category. Constructing a subset \(\Omega_d\) of \(\{(x, y) \in \mathbb{R}^2 : |x|+|y|\geq d\}\) of \(2\)-dimensional Lebesgue measure-zero satisfying condition \((*)\), they obtained measure zero stability problems of the above functional equations, when \(X = \mathbb{R}\).

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
54E52 Baire category, Baire spaces

Citations:

Zbl 1353.39026
Full Text: DOI

References:

[1] Batko, B., Stability of an alternative functional equation, J. Math. Anal. Appl., 339, 303-311 (2008) · Zbl 1133.39025 · doi:10.1016/j.jmaa.2007.07.001
[2] Bahyrycz, A.; Brzdȩk, J., On solutions of the d’Alembert equation on a restricted domain, Aequat. Math., 85, 169-183 (2013) · Zbl 1277.39036 · doi:10.1007/s00010-012-0162-x
[3] Brzdȩk, J.: On a method of proving the Hyers-Ulam stability of functional equations on restricted domain, The Australian Journal of Mathematical Analysis and Applications, Volume 6, Issue 1, Article 4, pp. 1-10, (2009) · Zbl 1175.39014
[4] Brzdȩk, J.; Sikorska, J., A conditional exponential functional equation and its stability, Nonlinear Anal. TMA, 72, 2929-2934 (2010) · Zbl 1187.39032 · doi:10.1016/j.na.2009.11.036
[5] Brzdȩk, J.; Fechner, W.; Moslehian, MS; Sikorska, J., Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal., 9, 3, 278-326 (2015) · Zbl 1312.39031 · doi:10.15352/bjma/09-3-20
[6] Choi, C-K, Stability of a monomial functional equation on restricted domains of lebesgue measure zero, Results Math., 72, 2067-2077 (2017) · Zbl 1385.39006 · doi:10.1007/s00025-017-0742-0
[7] C-K. Choi.: Stability of pexiderized Jensen and Jensen type functional equations on restricted domains. Bull. Korean Math. Soc. 56, No. 3, pp. 801-813 (2019) · Zbl 1417.39080
[8] Choi, C-K; Lee, B., Measure zero stability problem for Jensen type functional equations, Global J. Pure Appl. Math., 12, 4, 3673-3682 (2016)
[9] Chung, J.: On the Drygas functional equation in restricted domains, Aequat. Math. 10.1007/s00010-015-0388-5 · Zbl 1353.39026 · doi:10.1007/s00010-015-0388-5
[10] Chung, J., Stability of a conditional Chuchy equation on a set of measure zero, Aequat. Math., 87, 391-400 (2014) · Zbl 1297.39027 · doi:10.1007/s00010-013-0235-5
[11] Chung, J., Stability of functional equations on restricted domains in a group and their asymptotic behaviors, Comput. Math. Appl., 60, 2653-2665 (2010) · Zbl 1205.39022 · doi:10.1016/j.camwa.2010.09.003
[12] Chung, J., Choi, C-K.: Asymptotic behaviors of alternative Jensen functional equations—revisited, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 19, Number 4 (November 2012), Pages 409-421 (2012) · Zbl 1274.39042 · doi:10.7468/jksmeb.2012.19.4.409
[13] Chung, J., Kim, D., Rassias, J.M.: Stability of Jensen-type functional equations on restricted domains in a group and their asymptotic behaviors. J. Appl. Math. 2012, Article ID 691981 (2012) · Zbl 1235.39019
[14] Chung, J.; Rassias, JM, On a measure zero stability problem of a cyclic functional equation, Bull. Aust. Math. Soc., 93, 272-282 (2016) · Zbl 1339.39026 · doi:10.1017/S0004972715001185
[15] Chung, J.; Rassias, JM, Quadratic functional equations in a set of Lebesgue measure zero, J. Math. Anal. Appl., 419, 1065-1075 (2014) · Zbl 1294.39013 · doi:10.1016/j.jmaa.2014.05.032
[16] Eungrasamee, T.; Udomkavanich, P.; Nakmahachalasint, P., Generalized stability of classical polynomial functional equation of order \(n\), Adv. Differ. Equ., 2012, 135 (2012) · Zbl 1346.39029 · doi:10.1186/1687-1847-2012-135
[17] Fochi, M.: An alternative functional equation on restricted domain, Aequat. Math. 70, 2010-212 (2005) · Zbl 1088.39023 · doi:10.1007/s00010-005-2776-8
[18] Ger, R.; Sikorska, J., On the Cauchy equation on spheres, Ann. Math. Sil., 11, 89-99 (1997) · Zbl 0894.39009
[19] Gilányi, A., Hyers-Ulam stability of monomial functional equations on a general domain, Proc. Natl. Acad. Sci. USA, 96, 10588-10590 (1999) · Zbl 0963.39030 · doi:10.1073/pnas.96.19.10588
[20] Hyers, D.H., Isac, G., Rassias, T.M.: Stability of Functional Equations in Several Variables. Progress in Nonlinear Differential Equations and Their Applications, vol. 34. Birkhäuser, Boston, Mass, USA (1998) · Zbl 0907.39025
[21] Hyers, DH, On the stability of the linear functional equations, Proc. Nat. Acad. Sci. USA, 27, 222-224 (1941) · JFM 67.0424.01 · doi:10.1073/pnas.27.4.222
[22] Jung, S-M, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analisis (2011), New York: Springer, New York · Zbl 1221.39038
[23] Jung, S-M, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222, 126-137 (1998) · Zbl 0928.39013 · doi:10.1006/jmaa.1998.5916
[24] Kuczma, M., Functional equations on restricted domains, Aequat. Math., 18, 1-34 (1978) · Zbl 0386.39002 · doi:10.1007/BF01844065
[25] Lee, Y., The stability of the monomial functional equation, Bull. Korean Math. Soc., 45, 397-403 (2008) · Zbl 1152.39023 · doi:10.4134/BKMS.2008.45.2.397
[26] Oxtoby, JC, Measure and Category (1980), New York: Springer, New York · Zbl 0435.28011
[27] Park, S-H; Choi, C-K, Measure zero stability problem for alternative Jensen functional equations, Global J. Pure Appl. Math., 13, 4, 1171-1182 (2017)
[28] Rassias, JM, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl., 281, 747-762 (2002) · Zbl 1021.39015 · doi:10.1016/S0022-247X(02)00439-0
[29] Rassias, JM; Rassias, MJ, Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math., 129, 545-558 (2005) · Zbl 1081.39028 · doi:10.1016/j.bulsci.2005.02.001
[30] Rassias, JM; Rassias, MJ, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl., 281, 516-524 (2003) · Zbl 1028.39011 · doi:10.1016/S0022-247X(03)00136-7
[31] Rassias, JM, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl., 276, 747-762 (2002) · Zbl 1021.39015 · doi:10.1016/S0022-247X(02)00439-0
[32] Rassias, J.M., Thandapani, E., Ravi, K., Senthil Kumar, B.V.: Functional Equations and Inequalities—Solutions and Stability Results, Series on concrete and applicable mathematics: Volume 21, (2017) · Zbl 1371.39019
[33] Rassias, ThM, On the stability of linear mapping in Banach spaces, Proc. Am. Math. Soc, 72, 297-300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[34] Skof, F., Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53, 113-129 (1983) · Zbl 0599.39007 · doi:10.1007/BF02924890
[35] Ulam, SM, A Collection of Mathematical Problems (1960), New York: Interscience Publ, New York · Zbl 0086.24101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.