×

Recent developments of the conditional stability of the homomorphism equation. (English) Zbl 1312.39031

Summary: The issue of Ulam’s type stability of an equation is understood in the following way: When a mapping which satisfies the equation approximately (in some sense), it is “close” to a solution of it. In this expository paper, we present a survey and a discussion of selected recent results concerning such stability of the equations of homomorphisms, focussing especially on some conditional versions of them.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B55 Orthogonal additivity and other conditional functional equations

References:

[1] J. Aczél, Lectures on Functional Equations and Their Applications , Academic Press, New York-London, 1966.
[2] J. Aczél and J. Dhombres, Functional Equations in Several Variables , Cambridge University Press, Cambridge, 1989.
[3] C. Alsina and J.L. Garcia-Roig, On a conditional Cauchy equation on rhombuses , Functional analysis, approximation theory and numerical analysis, 5-7, World Sci. Publishing, River Edge, NJ, 1994. · Zbl 0877.39015 · doi:10.1142/9789814360166_0002
[4] C. Alsina, J. Sikorska and M.S. Tomás, Norm Derivatives and Characterizations of Inner Product Spaces , World Scientific Publishing Co., Hackensack, NJ, 2010.
[5] T. Aoki, On the stability of the linear transformation in Banach spaces , J. Math. Soc. Japan 2 (1950), 64-66. · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[6] L.M. Arriola and W.A. Beyer, Stability of the Cauchy functional equation over \(p\)-adic fields , Real Anal. Exchange 31 (2005/2006), 125-132. · Zbl 1099.39019
[7] R. Badora, On some generalized invariant means and their application to the stability of the Hyers-Ulam type , Ann. Polon. Math. 58 (1993), no. 2, 147-159. · Zbl 0787.43003
[8] R. Badora, On some generalized invariant means and almost approximately additive functions , Publ. Math. Debrecen 44 (1994), no. 1-2, 123-135. · Zbl 0841.43004
[9] A. Bahyrycz, Forti’s example of an unstable homomorphism equation , Aequationes Math. 74 (2007), 310-313. · Zbl 1165.39021 · doi:10.1007/s00010-007-2882-x
[10] A. Bahyrycz, J. Brzdęk, M. Piszczek and J. Sikorska, Hyperstability of the Fréchet equation and a characterization of inner product spaces , J. Funct. Spaces Appl. 2013 , Art. ID 496361, 6 pp.
[11] J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation \(f(x+y)=f(x)f(y)\) , Proc. Amer. Math. Soc. 74 (1979), no. 2, 242-246. · Zbl 0397.39010 · doi:10.2307/2043141
[12] K. Baron and G.L. Forti, Orthogonality and additivity modulo \(Z\) , Results Math. 26 (1994), no. 3-4, 205-210. · Zbl 0828.39010 · doi:10.1007/BF03323038
[13] K. Baron, F. Halter-Koch and P. Volkmann, On orthogonally exponential functions , Arch. Math. (Basel) 64 (1995), 410-414. · Zbl 0821.39006 · doi:10.1007/BF01197218
[14] G. Birkhoff, Orthogonality in linear metric spaces , Duke Math. J. 1 (1935), 169-172. · Zbl 0012.30604 · doi:10.1215/S0012-7094-35-00115-6
[15] D.G. Bourgin, Classes of transformations and bordering transformations , Bull. Amer. Math. Soc. 57 (1951), 223-237. · Zbl 1288.15023 · doi:10.1016/j.laa.2014.03.025
[16] N. Brillouët-Belluot, J. Brzd\kek and K. Ciepliński, On some recent developments in Ulam’s type stability , Abstr. Appl. Anal. 2012 , Art. ID 716936, 41 pp. · Zbl 1259.39019 · doi:10.1155/2012/716936
[17] J. Brzdęk, On functionals which are orthogonally additive modulo \(Z\) , Results Math. 30 (1996), 25-38. · Zbl 0862.39012 · doi:10.1007/BF03322177
[18] J. Brzdęk, On the Cauchy difference on normed spaces . Abh. Math. Sem. Univ. Hamburg 66 (1996), 143-150.
[19] J. Brzdęk, On orthogonally exponential and orthogonally additive mappings , Proc. Amer. Math. Soc. 125 (1997), 2127-2132. · Zbl 0870.39011 · doi:10.1090/S0002-9939-97-03791-X
[20] J. Brzdęk, On orthogonally exponential functionals , Pacific J. Math. 181 (1997), 247-267. · Zbl 1010.39011 · doi:10.2140/pjm.1997.181.247
[21] J. Brzdęk, On the isosceles orthogonally exponential mappings , Acta Math. Hungar. 87 (2000), no. 1-2, 147-152. · Zbl 0963.46015 · doi:10.1023/A:1006733302829
[22] J. Brzdęk, A note on stability of additive mappings , in: Stability of mappings of Hyers-Ulam type (Th.M. Rassias, J. Tabor eds.), 19-22, Hadronic Press Collect. Orig. Artic., Hadronic Press, Palm Harbor, FL, 1994.
[23] J. Brzdęk, Hyperstability of the Cauchy equation on restricted domains , Acta Math. Hungar. 141 (2013), 58-67. · Zbl 1313.39037 · doi:10.1007/s10474-013-0302-3
[24] J. Brzdęk, A hyperstability result for the Cauchy equation , Bull. Austral. Math. Soc. 89 (2014), 33-40. · Zbl 1290.39016 · doi:10.1017/S0004972713000683
[25] J. Brzdęk, Note on stability of the Cauchy equation - an answer to a problem of Th.M. Rassias , Carpathian J. Math. 30 (2014), 47-54.
[26] J. Brzdęk, Remarks on stability of some inhomogeneous functional equations , Aequationes Math., to appear, DOI: 10.1007/s00010-014-0274-6 · Zbl 1316.39011 · doi:10.1007/s00010-014-0274-6
[27] J. Brzdęk, L. Cădariu and K. Ciepliński, Fixed point theory and the Ulam stability , J. Funct. Spaces 2014 , Art. ID 829419, 16 pp.
[28] J. Brzdęk and K. Ciepliński, Hyperstability and superstability , Abstr. Appl. Anal. 2013 , Art. ID 401756, 13 pp.
[29] J. Brzdęk and J. Sikorska, On a conditional exponential functional equation and its stability , Nonlinear Anal. 72 (2010), 2923-2934. · Zbl 1187.39032 · doi:10.1016/j.na.2009.11.036
[30] F. Cabello-Sánchez, Stability of additive mappings on large subsets , Proc. Amer. Math. Soc., 128 (1999), no. 4, 1071-1077. · Zbl 0943.39011 · doi:10.1090/S0002-9939-99-05218-1
[31] L. Cădariu and V. Radu, Fixed points and the stability of Jensen’s functional equation , J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Art. 4, 7 pp.
[32] A.L. Cauchy, Cours d’analyse de l’Ecole Royale Polytechnique. 1 Analyse algébrique , V. Paris, 1821. [Oeuvres (11) 3, Paris 1879.] edition. Math. J. 16 (1949), 385-397.
[33] Y.-J. Cho, Th.M. Rassias and R. Saadati, Stability of functional equations in random normed spaces , Springer Optimization and Its Applications, vol. 86, Springer, New York, 2013.
[34] J. Chudziak, Approximate solutions of the Gołąb-Schinzel functional equation , J. Approx. Theory 136 (2005), 21-25. · Zbl 1202.15009 · doi:10.1080/03081080902778222
[35] K. Ciepliński, Applications of fixed point theorems to the Hyers-Ulam stability of functional equations - a survey , Ann. Funct. Anal. 3 (2012), no. 1, 151-164. · Zbl 1252.39032 · doi:10.15352/afa/1399900032
[36] S. Czerwik (ed.), Stability of Functional Equations of Ulam-Hyers-Rassias Type , Hadronic Press Inc., Palm Harbor, Florida, 2003. · Zbl 1382.39036
[37] J.B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space , Bull. Amer. Math. Soc. 74 (1968), 305-309. · Zbl 0157.29904 · doi:10.1090/S0002-9904-1968-11933-0
[38] B.R. Ebanks, Generalized Cauchy difference equations. II , Proc. Amer. Math. Soc. 136 (2008), 3911-3919. · Zbl 0043.32902 · doi:10.1090/S0002-9904-1951-09511-7
[39] M. Eshaghi Gordji and M.S. Moslehian, A trick for investigation of approximate derivations , Math. Commun. 15 (2010), no. 1, 99-105. · Zbl 1196.39017
[40] W. Fechner, On Functions with the Cauchy Difference Bounded by a Functional. III , Abh. Math. Sem. Univ. Hamburg 76 (2006), 57-62. · Zbl 1122.39019 · doi:10.1007/BF02960854
[41] W. Fechner, Separation theorems for conditional functional equations , Ann. Math. Sil. 21 (2007), 31-40. · Zbl 1155.39014
[42] W. Fechner and J. Sikorska, Sandwich theorems for orthogonally additive functions , Inequalities and Applications, International Series of Numerical Mathematics, vol. 157 (2009), 269-281. · Zbl 1266.39031 · doi:10.1007/978-3-7643-8773-0_26
[43] W. Fechner and J. Sikorska, On the stability of orthogonal additivity , Bull. Polish Acad. Sci. Math. 58 (2010), 23-30. · Zbl 1197.39016 · doi:10.4064/ba58-1-3
[44] W. Fechner and J. Sikorska, On a separation for the Cauchy equation on spheres , Nonlinear Anal. 75 (2012), 6306-6311. · Zbl 1256.39017 · doi:10.1016/j.na.2012.07.007
[45] G.L. Forti, Remark 13 . In: The Twenty-Second International Symposium on Functional Equations, December 16-December 22, 1984, Oberwolfach, Germany, Aequationes Math. 29 (1985), 90-91.
[46] G.L. Forti, The stability of homomorphisms and amenability, with applications to functional equations , Abh. Math. Sem. Univ. Hamburg 57 (1987), 215-226. · Zbl 0619.39012 · doi:10.1007/BF02941612
[47] G.L. Forti and J. Schwaiger, Stability of homomorphisms and completeness , C. R. Math. Rep. Acad. Sci. Canada 11 (1989), 215-220. · Zbl 0697.39013
[48] A. Fošner, R. Ger, A. Gilányi and M.S. Moslehian, On linear functional equations and completeness of normed spaces , Banach J. Math. Anal. 7 (2013), no. 1, 196-200. · Zbl 1282.46021 · doi:10.15352/bjma/1358864559
[49] Z. Gajda, On stability of additive mappings , Int. J. Math. Math. Sci. 14 (1991), 431-434. · Zbl 0739.39013 · doi:10.1155/S016117129100056X
[50] Z. Gajda, Invariant means and representations of semigroups in the theory of functional equations , Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], 1273. Uniwersytet Śląski, Katowice, 1992. 84 pp.
[51] Z. Gajda and Z. Kominek, On separation theorems for subadditive and superadditive functionals , Studia Math. 100 (1991), 25-38. · Zbl 0739.39014
[52] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl. 184 (1994), 431-436. · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211
[53] R. Ger, Superstabitity is not natural , Rocznik Naukowo-Dydaktyczny WSP w Krakowie, Prace Mat. 159 (1993), 109-123.
[54] R. Ger, A survey of recent results on stability of functional equations , Proceedings of the 4th International Conference on Functional Equations and Inequalities, Pedagogical University in Cracow (1994), 5-36.
[55] R. Ger and P. Šemrl, The stability of the exponential function , Proc. Amer. Math. Soc. 124 (1996), 779-787. · Zbl 0846.39013 · doi:10.1090/S0002-9939-96-03031-6
[56] R. Ger and J. Sikorska, Stability of the orthogonal additivity . Bull. Polish Acad. Sci. Math. 43 (1995), 143-151. · Zbl 0833.39007
[57] R. Ger and J. Sikorska, On the Cauchy equation on spheres , Ann. Math. Sil. 11 (1997), 89-99. · Zbl 0894.39009
[58] F.P. Greenleaf, Invariant means on topological groups and their applications , Van Nostrand Mathematical Studies, No. 16 Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969. · Zbl 0174.19001
[59] S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces , Pacific J. Math. 58 (1975), 427-436. · Zbl 0311.46015 · doi:10.2140/pjm.1975.58.427
[60] G. Hamel, Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung \(f(x+y)=f(x)+f(y)\) , Math. Ann. 60 (1905), 459-462. · JFM 36.0446.04 · doi:10.1007/BF01457624
[61] G. Hirasawa and T. Miura, Hyers-Ulam Stability of a closed operator in a Hilbert space , Bull. Korean. Math. Soc. 43 (2006), 107-117. · Zbl 1110.47017 · doi:10.4134/BKMS.2006.43.1.107
[62] D.H. Hyers, On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[63] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables , Birkhauser, Boston, Basel, Berlin, 1998. · Zbl 0907.39025
[64] R.C. James, Orthogonality in normed linear spaces , Duke Math. J. 12 (1945), 291-302. · Zbl 0060.26202 · doi:10.1215/S0012-7094-45-01223-3
[65] B.E. Johnson, Approximately multiplicative maps between Banach algebras , J. London Math. Soc. (2) 37 (1988), no. 2, 294-316. · Zbl 0652.46031 · doi:10.1112/jlms/s2-37.2.294
[66] K.-W. Jun, D.-S. Shin and B.-D. Kim, On Hyers-Ulam-Rassias stability of the Pexider equation , J. Math. Anal. Appl. 239 (1999), no. 1, 20-29. · Zbl 0780.17010 · doi:10.1088/0305-4470/26/9/011
[67] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis , Springer, New York, 2011. · Zbl 1221.39038 · doi:10.1007/978-1-4419-9637-4
[68] S.-M. Jung, M.S. Moslehian and P.K. Sahoo, Stability of generalized Jensen equation on restricted domains , J. Math Inequal. 4 (2010), no. 2, 191-206. · Zbl 1219.39016 · doi:10.7153/jmi-04-18
[69] Z. Kominek, On a local stability of the Jensen functional equation , Demonstratio Math. 22 (1989), no. 2, 499-507. · Zbl 0702.39007
[70] P. Kranz, Additive functionals on abelian semigroups , Comment. Math. Prace Mat. 16 (1972), 239-246. · Zbl 0262.20087
[71] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities , Państwowe Wydawnictwo Naukowe & Uniwersytet Śląski, Warszawa - Kraków - Katowice 1985.
[72] M. Laczkovich, The difference property. Paul Erdös and his mathematics , I (Budapest, 1999), 363-410, Bolyai Soc. Math. Stud., 11, Bolyai Math. Soc., Budapest, 2002.
[73] Y.-H. Lee, On the stability of the monomial functional equation , Bull. Korean Math. Soc. 45 (2008), 397-403. · Zbl 1152.39023 · doi:10.4134/BKMS.2008.45.2.397
[74] Gy. Maksa and Zs. Páles, Hyperstability of a class of linear functional equations , Acta Math. Acad. Paedagog. Nyházi. (N.S.) 17 (2001), 107-112.
[75] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of the Hyers-Ulam-Rassias theorem , Fuzzy Sets and Systems 159 (2008), no. 6, 720-729. · Zbl 1178.46075 · doi:10.1016/j.fss.2007.09.016
[76] M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation , Bull. Braz. Math. Soc. 37 (2006), no. 3, 361-376. · Zbl 1118.39015 · doi:10.1007/s00574-006-0016-z
[77] M.S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation , J. Math. Anal. Appl. 318 (2006), no. 1, 211-223. · Zbl 1118.39016 · doi:10.1016/j.jmaa.2005.05.052
[78] M.S. Moslehian, K. Nikodem and D. Popa, Asymptotic aspect of the quadratic functional equation in multi-normed spaces , J. Math. Anal. Appl. 355 (2009), no. 2, 717-724. · Zbl 1168.39012 · doi:10.1016/j.jmaa.2009.02.017
[79] M.S. Moslehian and Th.M. Rassias, Stability of functional equations in non-Archimedian spaces , Appl. Anal. Disc. Math. 1 (2007), 325-334. · Zbl 0940.39021 · doi:10.1006/jmaa.1999.6521
[80] M.S. Moslehian and Gh. Sadeghi, Perturbation of closed range operators , Turkish J. Math. 33 (2009), 143-149. · Zbl 1229.47025
[81] A. Najati, On the completeness of normed spaces , Appl. Math. Lett. 23 (2010), no. 8, 880-882. · Zbl 1200.39011 · doi:10.1016/j.aml.2010.04.002
[82] K. Nikodem, Zs. Páles and S. Wąsowicz, Abstract separation theorems of Rodé type and their applications , Ann. Polon. Math. 72 (1999), no. 3, 207-217.
[83] A. Ostrowski, Über die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen , Jahresbericht. Deutschen Math Verein. 38 (1929), 54-62. · JFM 55.0800.01
[84] Zs. Páles, Hyers-Ulam stability of the Cauchy functional equation on square-symmetric groupoids , Publ. Math. Debrecen 58 (2001), no. 4, 651-666.
[85] C. Park, On the stability of the linear mapping in Banach modules , J. Math. Anal. Appl. 275 (2002), 711-720. · Zbl 1021.46037 · doi:10.1016/S0022-247X(02)00386-4
[86] L. Paganoni and J. Rätz, Conditional function equations and orthogonal additivity , Aequationes Math. 50 (1995), 135-142. · Zbl 0876.39008 · doi:10.1007/BF01831116
[87] M. Piszczek, Remark on hyperstability of the general linear equation , Aequationes Math. 88 (2014), 163-168. · Zbl 1304.39033 · doi:10.1007/s00010-013-0214-x
[88] Gy. Pólya and G. Szegö, Aufgaben und Lehrsätz aus der Analysis , vol. 1, Springer-Verlag, Berlin, 1925.
[89] J.M. Rassias, On approximation of approximately linear mappings by linear mappings , J. Funct. Anal. 46 (1982), no 1, 126-130. · Zbl 0482.47033 · doi:10.1016/0022-1236(82)90048-9
[90] Th.M. Rassias, On the stability of the linear mapping in Banach spaces , Proc. Amer. Math. Soc. 72 (1978), 297-300. · Zbl 0398.47040 · doi:10.2307/2042795
[91] Th.M. Rassias, Problem , Aequationes Math. 39 (1990), 309.
[92] Th.M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability , Proc. Amer. Math. Soc. 114 (1992), 989-993. · Zbl 0761.47004 · doi:10.2307/2159617
[93] Th.M. Rassias and J. Tabor, What is left of Hyers-Ulam stability? , J. Nat. Geometry 1 (1992), 65-69. · Zbl 0757.47032
[94] J. Rätz, On orthogonally additive mappings , Aequations Math. 28 (1985), 35-49. · Zbl 0060.26202 · doi:10.1215/S0012-7094-45-01223-3
[95] B.D. Roberts, On the geometry of abstract vector spaces , Tôhoku Math. J. 39 (1934), 42-59. · Zbl 0009.16903
[96] P.K. Sahoo and P. Kannappan, Introduction to Functional Equations , CRC Press, Boca Raton-London-New York 2011. · Zbl 1223.39012
[97] J. Schwaiger, 12. Remark , Report of Meeting, Aequationes Math. 35 (1988), 120-121.
[98] P. Šemrl, Nonlinear perturbations of homomorphisms on \(C(X)\) , Quart. J. Math. Oxford Ser. 50 (1999), no. 197, 87-109. · Zbl 0923.46050 · doi:10.1093/qjmath/50.197.87
[99] A.I. Shtern, Unbounded tame quasirepresentations with commutative discrepancies for amenable groups , Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16 (2013), no. 3, 1350025, 8 pp. · Zbl 1277.43004 · doi:10.1142/S0219025713500252
[100] J. Sikorska, Orthogonal stability of the Cauchy equation on balls , Demonstratio Math. 33 (2000), 527-546. · Zbl 0963.39029
[101] J. Sikorska, Orthogonal stability of the Cauchy functional equation on balls in normed linear spaces , Demonstratio Math. 37 (2004), 579-596. · Zbl 1057.39026
[102] J. Sikorska, Generalized orthogonal stability of some functional equations , J. Inequal. Appl. 2006 , Art. ID 12404, 23 pp. · Zbl 1133.39023 · doi:10.1155/JIA/2006/12404
[103] J. Sikorska, Generalized stability of the Cauchy and Jensen functional equations on spheres , J. Math. Anal. Appl. 345 (2008), 650-660. · Zbl 1157.39019 · doi:10.1016/j.jmaa.2008.04.046
[104] J. Sikorska, On two conditional Pexider functional equations and their stabilities , Nonlinear Anal. 70 (2009), 2673-2684. · Zbl 1162.39018 · doi:10.1016/j.na.2008.03.054
[105] J. Sikorska, On a pexiderized conditional exponential functional equation , Acta Math. Hungar. 125 (3) (2009), 287-299. · Zbl 1212.39039 · doi:10.1007/s10474-009-9019-8
[106] J. Sikorska, Exponential functional equation on spheres , Appl. Math. Lett. 23 (2010), no. 2, 156-160. · Zbl 1205.39032 · doi:10.1016/j.aml.2009.09.004
[107] J. Sikorska, On a direct method for proving the Hyers-Ulam stability of functional equations , J. Math. Anal. Appl. 372 (2010), 99-109. · Zbl 1198.39039 · doi:10.1016/j.jmaa.2010.06.056
[108] J. Sikorska, Orthogonalities and functional equations , Aequationes Math., to appear, DOI: 10.1007/s00010-014-0288-0. · Zbl 1204.39001 · doi:10.1007/s00010-009-2959-9
[109] F. Skof, On the stability of functional equations on a restricted domain and related topics . In: Stability of Mappings of Hyers-Ulam Type (Th.M. Rassias and J. Tabor, eds.), pp. 141-151. Hadronic Press, Palm Harbor, 1994. · Zbl 0844.39006
[110] F. Skof, Proprietá locali e approssimazione di operatori , Rend. Semin. Mat. Fis. Milano 53 (1983), 113-129. · Zbl 0599.39007 · doi:10.1007/BF02924890
[111] H. Stetkær, Functional Equations on Groups , World Scientific Publishing Co., Hackensack, NJ, 2013. · Zbl 1298.39018 · doi:10.1142/8830
[112] Gy. Szabó, A conditional Cauchy equation on normed spaces , Publ. Math. Debrecen 42 (1993), 256-271.
[113] L. Székelyhidi, Note on a stability theorem , Canad. Math. Bull. 25 (1982), 500-501. · Zbl 0940.39021 · doi:10.1006/jmaa.1999.6521
[114] L. Székelyhidi, Remark 17 . In: The Twenty-Second International Symposium on Functional Equations, December 16-December 22, 1984, Oberwolfach, Germany, Aequationes Math 29 (1985), 95-96.
[115] S.M. Ulam, Problems in Modern Mathematics , Science Editions, Wiley, New York, 1964. · Zbl 0137.24201
[116] P. Zlatoš, Stability of homomorphisms in the compact-open topology , Algebra Universalis 64 (2010), 203-212. · Zbl 1209.39007 · doi:10.1007/s00012-010-0099-7
[117] P. Zlatoš, Stability of group homomorphisms in the compact-open topology , J. Logic Anal. 2 (2010), 3-115.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.