×

The LHC string Hunter’s companion. (English) Zbl 1192.81279

Summary: The mass scale of fundamental strings can be as low as few \(TeV/c^{2}\) provided that spacetime extends into large extra dimensions. We discuss the phenomenological aspects of weakly coupled low mass string theory related to experimental searches for physics beyond the Standard Model at the Large Hadron Collider (LHC). We consider the extensions of the Standard Model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. We focus on the model-independent, universal features of low mass string theory. We compute, collect and tabulate the full-fledged string amplitudes describing all \(2\rightarrow 2\) parton scattering subprocesses at the leading order of string perturbation theory. We cast our results in a form suitable for the implementation of stringy partonic cross sections in the LHC data analysis. The amplitudes involving four gluons as well as those with two gluons plus two quarks do not depend on the compactification details and are completely model-independent. They exhibit resonant behavior at the parton center of mass energies equal to the masses of Regge resonances. The existence of these resonances is the primary signal of string physics and should be easy to detect. On the other hand, the four-fermion processes like quark-antiquark scattering include also the exchanges of heavy Kaluza-Klein and winding states, whose details depend on the form of internal geometry. They could be used as “precision tests” in order to distinguish between various compactification scenarios.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
83E30 String and superstring theories in gravitational theory

Software:

JaxoDraw

References:

[1] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. R., The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B, 429, 263 (1998) · Zbl 1355.81103
[2] Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. R., New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B, 436, 257 (1998)
[3] Ghilencea, D. M.; Ibanez, L. E.; Irges, N.; Quevedo, F., TeV-scale \(Z^\prime\) bosons from D-branes, JHEP, 0208, 016 (2002) · Zbl 1226.81191
[4] Abel, S. A.; Goodsell, M. D.; Jaeckel, J.; Khoze, V. V.; Ringwald, A., Kinetic mixing of the photon with hidden U(1)s in string phenomenology
[5] Horowitz, G. T.; Polchinski, J., A correspondence principle for black holes and strings, Phys. Rev. D, 55, 6189 (1997)
[6] Meade, P.; Randall, L., Black holes and quantum gravity at the LHC, JHEP, 0805, 003 (2008)
[7] Cullen, S.; Perelstein, M.; Peskin, M. E., TeV strings and collider probes of large extra dimensions, Phys. Rev. D, 62, 055012 (2000)
[8] Oprisa, D.; Stieberger, S., Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums
[9] Stieberger, S.; Taylor, T. R., Amplitude for N-gluon superstring scattering, Phys. Rev. Lett., 97, 211601 (2006) · Zbl 1228.81272
[10] Stieberger, S.; Taylor, T. R., Multi-gluon scattering in open superstring theory, Phys. Rev. D, 74, 126007 (2006)
[11] Stieberger, S.; Taylor, T. R., Complete six-gluon disk amplitude in superstring theory, Nucl. Phys. B, 801, 128 (2008) · Zbl 1189.81190
[12] Accomando, E.; Antoniadis, I.; Benakli, K., Looking for TeV-scale strings and extra-dimensions, Nucl. Phys. B, 579, 3 (2000)
[13] Klebanov, I. R.; Witten, E., Proton decay in intersecting D-brane models, Nucl. Phys. B, 664, 3 (2003) · Zbl 1051.81059
[14] Cvetic, M.; Papadimitriou, I., Phys. Rev. D, 70, 029903 (2004), Erratum
[15] Abel, S. A.; Lebedev, O.; Santiago, J., Flavour in intersecting brane models and bounds on the string scale, Nucl. Phys. B, 696, 141 (2004)
[16] Abel, S. A.; Owen, A. W., Interactions in intersecting brane models, Nucl. Phys. B, 663, 197 (2003) · Zbl 1059.81585
[17] Abel, S. A.; Owen, A. W., N-point amplitudes in intersecting brane models, Nucl. Phys. B, 682, 183 (2004) · Zbl 1045.81531
[18] Lüst, D.; Mayr, P.; Richter, R.; Stieberger, S., Scattering of gauge, matter, and moduli fields from intersecting branes, Nucl. Phys. B, 696, 205 (2004) · Zbl 1236.81167
[19] Cremades, D.; Ibanez, L. E.; Marchesano, F., Computing Yukawa couplings from magnetized extra dimensions, JHEP, 0405, 079 (2004)
[20] Cvetic, M.; Richter, R., Proton decay via dimension-six operators in intersecting D6-brane models, Nucl. Phys. B, 762, 112 (2007) · Zbl 1116.81356
[21] Chemtob, M., Nucleon decay in gauge unified models with intersecting D6-branes, Phys. Rev. D, 76, 025002 (2007) · Zbl 1222.81232
[22] Anchordoqui, L. A.; Goldberg, H.; Nawata, S.; Taylor, T. R., Jet signals for low mass strings at the LHC, Phys. Rev. Lett., 100, 171603 (2008)
[23] Anchordoqui, L. A.; Goldberg, H.; Nawata, S.; Taylor, T. R., Direct photons as probes of low mass strings at the LHC
[24] Balasubramanian, V.; Berglund, P.; Conlon, J. P.; Quevedo, F., Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP, 0503, 007 (2005)
[25] L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T.R. Taylor, Dijet signals for low mass strings at the LHC, MPP-2008-86, LMU-ASC 42/08, in preparation; L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T.R. Taylor, Dijet signals for low mass strings at the LHC, MPP-2008-86, LMU-ASC 42/08, in preparation
[26] Antoniadis, I., The physics of extra dimensions, Lect. Notes Phys., 720, 293 (2007)
[27] Polchinski, J., String Theory (1998), Cambridge Univ. Press, (Sections 6 and 12) · Zbl 1006.81521
[28] Conlon, J. P.; Quevedo, F.; Suruliz, K., Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP, 0508, 007 (2005)
[29] Conlon, J. P.; Kom, C. H.; Suruliz, K.; Allanach, B. C.; Quevedo, F., Sparticle spectra and LHC signatures for large volume string compactifications, JHEP, 0708, 061 (2007) · Zbl 1326.81264
[30] Dimopoulos, S.; Landsberg, G. L., Black holes at the LHC, Phys. Rev. Lett., 87, 161602 (2001)
[31] Giddings, S. B.; Thomas, S. D., High energy colliders as black hole factories: The end of short distance physics, Phys. Rev. D, 65, 056010 (2002)
[32] Dudas, E.; Mourad, J., String theory predictions for future accelerators, Nucl. Phys. B, 575, 3 (2000) · Zbl 1056.81592
[33] Chialva, D.; Iengo, R.; Russo, J. G., Cross sections for production of closed superstrings at high energy colliders in brane world models, Phys. Rev. D, 71, 106009 (2005)
[34] Beasley, C.; Heckman, J. J.; Vafa, C., GUTs and exceptional branes in F-theory - II: Experimental predictions · Zbl 1243.81141
[35] Anastasopoulos, P.; Dijkstra, T. P.T.; Kiritsis, E.; Schellekens, A. N., Orientifolds, hypercharge embeddings and the standard model, Nucl. Phys. B, 759, 83 (2006) · Zbl 1116.81069
[36] Berenstein, D.; Jejjala, V.; Leigh, R. G., The standard model on a D-brane, Phys. Rev. Lett., 88, 071602 (2002)
[37] Verlinde, H.; Wijnholt, M., Building the standard model on a D3-brane, JHEP, 0701, 106 (2007)
[38] Malyshev, D.; Verlinde, H., D-branes at singularities and string phenomenology, Nucl. Phys. B (Proc. Suppl.), 171, 139 (2007)
[39] Antoniadis, I.; Kiritsis, E.; Rizos, J.; Tomaras, T. N., D-branes and the standard model, Nucl. Phys. B, 660, 81 (2003)
[40] Blumenhagen, R.; Körs, B.; Lüst, D.; Stieberger, S., Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rep., 445, 1 (2007)
[41] Berg, M.; Haack, M.; Pajer, E., Jumping through loops: On soft terms from large volume compactifications, JHEP, 0709, 031 (2007)
[42] Blumenhagen, R.; Moster, S.; Plauschinn, E., Moduli stabilisation versus chirality for MSSM like type IIB orientifolds, JHEP, 0801, 058 (2008)
[43] Kokorelis, C., Exact standard model structures from intersecting D5-branes, Nucl. Phys. B, 677, 115 (2004) · Zbl 1097.81930
[44] Blumenhagen, R.; Cvetic, M.; Marchesano, F.; Shiu, G., Chiral D-brane models with frozen open string moduli, JHEP, 0503, 050 (2005)
[45] Cvetic, M.; Langacker, P.; Shiu, G., Phenomenology of a three-family standard-like string model, Phys. Rev. D, 66, 066004 (2002)
[46] Shiu, G.; Tye, S. H., TeV scale superstring and extra dimensions, Phys. Rev. D, 58, 106007 (1998)
[47] Cremades, D.; Ibanez, L. E.; Marchesano, F., SUSY quivers, intersecting branes and the modest hierarchy problem, JHEP, 0207, 009 (2002) · Zbl 0998.81545
[48] Lüst, D.; Reffert, S.; Stieberger, S., Flux-induced soft supersymmetry breaking in chiral type IIb orientifolds with D3/D7-branes, Nucl. Phys. B, 706, 3 (2005) · Zbl 1119.81374
[49] Stieberger, S.; Taylor, T. R., Supersymmetry relations and MHV amplitudes in superstring theory, Nucl. Phys. B, 793, 83 (2008) · Zbl 1225.81103
[50] Banks, T.; Dixon, L. J.; Friedan, D.; Martinec, E. J., Phenomenology and conformal field theory or can string theory predict the weak mixing angle?, Nucl. Phys. B, 299, 613 (1988)
[51] Banks, T.; Dixon, L. J., Constraints on string vacua with space-time supersymmetry, Nucl. Phys. B, 307, 93 (1988)
[52] Ferrara, S.; Lüst, D.; Theisen, S., World sheet versus spectrum symmetries in heterotic and type II superstrings, Nucl. Phys. B, 325, 501 (1989)
[53] Schwarz, J. H., Superstring theory, Phys. Rep., 89, 223 (1982) · Zbl 0578.22027
[54] van Ritbergen, T.; Schellekens, A. N.; Vermaseren, J. A.M., Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A, 14, 41 (1999) · Zbl 0924.22017
[55] Gava, E.; Narain, K. S.; Sarmadi, M. H., On the bound states of \(p\)- and \((p + 2)\)-branes, Nucl. Phys. B, 504, 214 (1997) · Zbl 0979.81575
[56] Antoniadis, I.; Benakli, K.; Laugier, A., Contact interactions in D-brane models, JHEP, 0105, 044 (2001)
[57] Burwick, T. T.; Kaiser, R. K.; Müller, H. F., General Yukawa couplings of strings on \(Z_N\) orbifolds, Nucl. Phys. B, 355, 689 (1991)
[58] Erler, J.; Jungnickel, D.; Spalinski, M.; Stieberger, S., Higher twisted sector couplings of \(Z_N\) orbifolds, Nucl. Phys. B, 397, 379 (1993)
[59] Berenstein, D., Possible exotic stringy signatures at the LHC
[60] Barger, V. D.; Phillips, R. J.N., Collider Physics (1996), Westview Press
[61] Anchordoqui, L. A.; Goldberg, H.; Taylor, T. R., Decay widths of lowest massive Regge excitations of open strings
[62] Binosi, D.; Theussl, L., JaxoDraw: A graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun., 161, 76 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.