×

TeV-scale \(Z'\) bosons from D-branes. (English) Zbl 1226.81191

Summary: Generic D-brane string models of particle physics predict the existence of extra \(U(1)\) gauge symmetries beyond hypercharge. These symmetries are not of the \(E_6\) class but rather include the gauging of baryon and lepton numbers as well as certain Peccei-Quinn-like symmetries. Some of the \(U(1)\)’s have triangle anomalies, but they are cancelled by a Green-Schwarz mechanism. The corresponding gauge bosons typically acquire a mass of order the string scale \(M_S\) by combining with two-index antisymmetric fields coming from the closed string sector of the theory. We argue that in string models with a low string scale \(M_S\propto 1-10\) TeV, the presence of these generic \(U(1)\)’s may be amenable to experimental test. Present constraints from electroweak precision data already set important bounds on the mass of these extra gauge bosons. In particular, for large classes of models, \(\rho\)-parameter constraints imply \(M_S\geq 1.5\) TeV. In the present scheme some fraction of the experimentally measured \(Z^0\) mass is due not to the Higgs mechanism, but rather to the mixing with these closed string fields. We give explicit formulae for recently constructed classes of intersecting D6- and D5-brane models yielding the Standard Model (SM) fermion spectrum.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81V22 Unified quantum theories

References:

[3] doi:10.1016/S0370-2693(01)00150-2 · doi:10.1016/S0370-2693(01)00150-2
[4] doi:10.1103/PhysRevLett.88.071602 · doi:10.1103/PhysRevLett.88.071602
[6] doi:10.1016/S0370-2693(02)01491-0 · doi:10.1016/S0370-2693(02)01491-0
[9] doi:10.1016/S0550-3213(00)00669-6 · Zbl 0972.81140 · doi:10.1016/S0550-3213(00)00669-6
[11] doi:10.1002/1521-3978(200105)49:4/6&lt;591::AID-PROP591&gt;3.0.CO;2-A · Zbl 0971.81142 · doi:10.1002/1521-3978(200105)49:4/6<591::AID-PROP591>3.0.CO;2-A
[12] doi:10.1063/1.1376157 · Zbl 1036.81024 · doi:10.1063/1.1376157
[16] doi:10.1103/PhysRevLett.87.201801 · doi:10.1103/PhysRevLett.87.201801
[17] doi:10.1016/S0550-3213(01)00427-8 · Zbl 0988.81087 · doi:10.1016/S0550-3213(01)00427-8
[19] doi:10.1016/S0550-3213(01)00423-0 · Zbl 0988.81094 · doi:10.1016/S0550-3213(01)00423-0
[21] doi:10.1016/S0370-2693(02)01332-1 · Zbl 0991.81101 · doi:10.1016/S0370-2693(02)01332-1
[32] doi:10.1016/0370-1573(89)90071-9 · doi:10.1016/0370-1573(89)90071-9
[34] doi:10.1016/S0370-1573(98)00133-1 · doi:10.1016/S0370-1573(98)00133-1
[35] doi:10.1016/S0550-3213(98)00791-3 · Zbl 0942.81065 · doi:10.1016/S0550-3213(98)00791-3
[36] doi:10.1016/S0550-3213(98)00793-7 · Zbl 0942.81056 · doi:10.1016/S0550-3213(98)00793-7
[37] doi:10.1016/S0550-3213(99)00452-6 · Zbl 0957.81058 · doi:10.1016/S0550-3213(99)00452-6
[39] doi:10.1016/S0550-3213(99)00737-3 · Zbl 0951.81076 · doi:10.1016/S0550-3213(99)00737-3
[40] doi:10.1016/S0370-2693(00)00733-4 · Zbl 1050.81721 · doi:10.1016/S0370-2693(00)00733-4
[42] doi:10.1016/S0550-3213(02)00458-3 · doi:10.1016/S0550-3213(02)00458-3
[43] doi:10.1016/S0550-3213(97)00337-4 · Zbl 0939.81029 · doi:10.1016/S0550-3213(97)00337-4
[45] doi:10.1016/S0370-2693(98)00466-3 · Zbl 1355.81103 · doi:10.1016/S0370-2693(98)00466-3
[46] doi:10.1016/S0370-2693(98)00860-0 · doi:10.1016/S0370-2693(98)00860-0
[47] doi:10.1103/PhysRevLett.83.4690 · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.