×

Penalty-free any-order weak Galerkin FEMs for linear elasticity on quadrilateral meshes. (English) Zbl 1516.65142

Summary: This paper develops a family of new weak Galerkin (WG) finite element methods (FEMs) for solving linear elasticity in the primal formulation. For a convex quadrilateral mesh, degree \(k \ge 0\) vector-valued polynomials are used independently in element interiors and on edges for approximating the displacement. No penalty or stabilizer is needed for these new methods. The methods are free of Poisson-locking and have optimal order \((k+1)\) convergence rates in displacement, stress, and dilation (divergence of displacement). Numerical experiments on popular test cases are presented to illustrate the theoretical estimates and demonstrate efficiency of these new solvers. Extension to cuboidal hexahedral meshes is briefly discussed.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65Y99 Computer aspects of numerical algorithms
74B05 Classical linear elasticity
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

DarcyLite
Full Text: DOI

References:

[1] Arbogast, T.; Correa, MR, Two families of H(div) mixed finite elements on quadrilaterals of minimal dimension, SIAM J. Numer. Anal., 54, 3332-3356 (2016) · Zbl 1353.65118 · doi:10.1137/15M1013705
[2] Arbogast, T.; Tao, Z., Construction of H(div)-conforming mixed finite elements on cuboidal hexahedra, Numer. Math., 142, 1-32 (2019) · Zbl 1414.65031 · doi:10.1007/s00211-018-0998-7
[3] Arnold, DN; Awanou, G.; Qiu, W., Mixed finite elements for elasticity on quadrilateral meshes, Adv. Comput. Math., 41, 553-572 (2015) · Zbl 1320.74096 · doi:10.1007/s10444-014-9376-x
[4] Artioli, E.; Beirao da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem, Comput. Mech., 60, 355-377 (2017) · Zbl 1386.74132 · doi:10.1007/s00466-017-1404-5
[5] Artioli, E.; Beirao da Veiga, L.; Lovadina, C.; Sacco, E., Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem, Comput. Mech., 60, 643-657 (2017) · Zbl 1386.74133 · doi:10.1007/s00466-017-1429-9
[6] Babuska, I.; Suli, M., The h-p version of the finite element method with quasiuniform meshes, Math. Model. Numer. Anal., 21, 199-238 (1987) · Zbl 0623.65113 · doi:10.1051/m2an/1987210201991
[7] Beirao da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, LD; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 199-214 (2013) · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[8] Beirao da Veiga, L.; Brezzi, F.; Marini, LD, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51, 2, 794-812 (2013) · Zbl 1268.74010 · doi:10.1137/120874746
[9] Beirao da Veiga, L.; Lovadina, C.; Mora, D., A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Eng., 295, 327-346 (2015) · Zbl 1423.74120 · doi:10.1016/j.cma.2015.07.013
[10] Berbatov, KB; Lazarov, S.; Jivkov, AP, A guide to the finite and virtual element methods for elasticity, Appl. Numer. Math., 169, 351-395 (2021) · Zbl 1479.65025 · doi:10.1016/j.apnum.2021.07.010
[11] Bower, AF, Applied Mechanics of Solids (2010), London: CRC Press, London
[12] Brenner, S., A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity, SIAM J. Numer. Anal., 30, 116-135 (1993) · Zbl 0767.73068 · doi:10.1137/0730006
[13] Brenner, S.; Scott, L., The Mathematical Theory of Finite Element Methods (2008), New York: Springer, New York · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[14] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Berlin: Springer, Berlin · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[15] Carstensen, C.; Schedensack, M., Medius analysis and comparison results for first-order finite element methods in linear elasticity, IMA J. Numer. Anal., 35, 1591-1621 (2015) · Zbl 1329.74272 · doi:10.1093/imanum/dru048
[16] Chen, G.; Xie, X., A robust weak Galerkin finite element method for linear elasticity with strong symmetric stresses, Comput. Methods Appl. Math., 16, 3, 389-408 (2016) · Zbl 1360.74134 · doi:10.1515/cmam-2016-0012
[17] Chen, L.; Huang, X., A finite element elasticity complex in three dimensions, Math. Comput., 91, 2095-2127 (2022) · Zbl 1498.65196 · doi:10.1090/mcom/3739
[18] Chen, L.; Huang, X., Finite elements for div- and divdiv-conforming symmetric tensors in arbitrary dimension, SIAM J. Numer. Anal., 60, 4, 1932-1961 (2022) · Zbl 1496.65213 · doi:10.1137/21M1433708
[19] Chen, L.; Wang, J.; Ye, X., A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59, 496-511 (2014) · Zbl 1307.65153 · doi:10.1007/s10915-013-9771-3
[20] Chou, S-H; He, S., On the regularity and uniformness conditions on quadrilateral grids, Comput. Meth. Appl. Mech. Eng., 191, 5149-5158 (2002) · Zbl 1030.65124 · doi:10.1016/S0045-7825(02)00357-2
[21] Falk, RS, Nonconforming finite element methods for the equations of linear elasticity, Math. Comput., 57, 196, 529-550 (1991) · Zbl 0747.73044 · doi:10.1090/S0025-5718-1991-1094947-6
[22] Feng, Y.; Liu, Y.; Wang, R.; Zhang, S., A stabilizer-free weak Galerkin finite element method for the Stokes equations, Adv. Appl. Math. Mech., 14, 1, 181-201 (2021) · Zbl 1499.65657 · doi:10.4208/aamm.OA-2020-0325
[23] Fu, G.; Cockburn, B.; Stolarski, H., Analysis of an HDG method for linear elasticity, Int. J. Numer. Methods Eng., 102, 3-4, 551-575 (2015) · Zbl 1352.74037 · doi:10.1002/nme.4781
[24] Gain, A.; Talischi, C.; Paulino, G., On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Eng., 282, 132-160 (2014) · Zbl 1423.74095 · doi:10.1016/j.cma.2014.05.005
[25] Harper, G.; Liu, J.; Tavener, S.; Zheng, B., Lowest-order weak Galerkin finite element methods for linear elasticity on rectangular and brick meshes, J. Sci. Comput., 78, 1917-1941 (2019) · Zbl 1419.65110 · doi:10.1007/s10915-018-0837-0
[26] Hu, J., A new family of efficient conforming mixed finite elements on both rectangular and cuboid meshes for linear elasticity in the symmetric formulation, SIAM J. Numer. Anal., 53, 3, 1438-1463 (2015) · Zbl 1328.65242 · doi:10.1137/130945272
[27] Hu, J.; Man, H.; Wang, J.; Zhang, S., The simplest nonconforming mixed finite element method for linear elasticity in the symmetric formulation on n-rectangular grids, Comput. Math. Appl., 71, 7, 1317-1336 (2016) · Zbl 1443.65338 · doi:10.1016/j.camwa.2016.01.023
[28] Li, J.; Ye, X.; Zhang, S., A weak Galerkin least-squares finite element method for div-curl systems, J. Comput. Phys., 363, 79-86 (2018) · Zbl 1398.65306 · doi:10.1016/j.jcp.2018.02.036
[29] Liu, J.; Cali, R., A note on the approximation properties of the locally divergence-free finite elements, Int. J. Numer. Anal. Model., 5, 693-703 (2008) · Zbl 1170.65096
[30] Liu, J.; Sadre-Marandi, F.; Wang, Z., DarcyLite: a Matlab toolbox for Darcy flow computation, Procedia Comput. Sci., 80, 1301-1312 (2016) · doi:10.1016/j.procs.2016.05.485
[31] Liu, J.; Tavener, S.; Wang, Z., Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes, SIAM J. Sci. Comput., 40, 5, B1229-B1252 (2018) · Zbl 1404.65232 · doi:10.1137/17M1145677
[32] Liu, J.; Tavener, S.; Wang, Z., Penalty-free any-order weak Galerkin FEMs for elliptic problems on quadrilateral meshes, J. Sci. Comput., 83, 3, 1-19 (2020) · Zbl 1440.65219 · doi:10.1007/s10915-020-01239-4
[33] Nguyen, NC; Peraire, J.; Cockburn, B., High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics, J. Comput. Phys., 230, 10, 885 (2011) · Zbl 1364.76093 · doi:10.1016/j.jcp.2011.01.035
[34] Qiu, W.; Shen, J.; Shi, K., An HDG method for linear elasticity with strong symmetric stresses, Math. Comput., 87, 309, 69-93 (2018) · Zbl 1410.65459 · doi:10.1090/mcom/3249
[35] Soon, S-C; Cockburn, B.; Stolarski, HK, A hybridizable discontinuous Galerkin method for linear elasticity, Int. J. Numer. Methods Eng., 80, 8, 1058-1092 (2009) · Zbl 1176.74196 · doi:10.1002/nme.2646
[36] Timoshenko, SP; Goodier, JN, Theory of Elasticity (1970), New York: McGraw-Hill, New York · Zbl 0266.73008
[37] Wang, C., New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element methods, J. Comput. Appl. Math., 341, 127-143 (2018) · Zbl 1427.78024 · doi:10.1016/j.cam.2018.04.015
[38] Wang, C.; Wang, J.; Wang, R.; Zhang, R., A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307, 346-366 (2016) · Zbl 1338.74104 · doi:10.1016/j.cam.2015.12.015
[39] Wang, J.; Wang, R.; Zhai, Q.; Zhang, R., A systematic study on weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 74, 3, 1369-1396 (2018) · Zbl 1398.65311 · doi:10.1007/s10915-017-0496-6
[40] Wang, J.; Ye, X., A weak Galerkin finite element method for second order elliptic problems, J. Comput. Appl. Math., 241, 103-115 (2013) · Zbl 1261.65121 · doi:10.1016/j.cam.2012.10.003
[41] Wang, J.; Ye, X., A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comput., 83, 2101-2126 (2014) · Zbl 1308.65202 · doi:10.1090/S0025-5718-2014-02852-4
[42] Wang, J.; Zhai, Q.; Zhang, R.; Zhang, S., A weak Galerkin finite element scheme for the Cahn-Hilliard equation, Math. Comput., 88, 211-235 (2019) · Zbl 1420.65128 · doi:10.1090/mcom/3369
[43] Wang, R.; Zhang, R., A weak Galerkin finite element method for the linear elasticity problem in mixed form, J. Comput. Math., 36, 469-491 (2018) · Zbl 1424.74046 · doi:10.4208/jcm.1701-m2016-0733
[44] Wang, Z.; Tavener, S.; Liu, J., Analysis of a 2-field finite element solver for poroelasticity on quadrilateral meshes, J. Comput. Appl. Math., 393 (2021) · Zbl 1462.74163 · doi:10.1016/j.cam.2021.113539
[45] Wang, Z.; Wang, R.; Liu, J., Robust weak Galerkin finite element solvers for Stokes flow based on a lifting operator, Comput. Math. Appl., 125, 90-100 (2022) · Zbl 1524.65867 · doi:10.1016/j.camwa.2022.08.043
[46] Yi, S-Y, A lowest-order weak Galerkin method for linear elasticity, J. Comput. Appl. Math., 350, 286-298 (2019) · Zbl 1469.74111 · doi:10.1016/j.cam.2018.10.016
[47] Zhang, Y.; Wang, S.; Chan, D., A new five-node locking-free quadrilateral element based on smoothed FEM for near-incompressible linear elasticity, Int. J. Numer. Meth. Eng., 100, 633-668 (2014) · Zbl 1352.74461 · doi:10.1002/nme.4754
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.