×

Error estimation of a discontinuous Galerkin method for time fractional subdiffusion problems with nonsmooth data. (English) Zbl 1503.65236

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
44A10 Laplace transform

References:

[1] Ciarlet, P., The Finite Element Method for Elliptic Problems (2002), Philadelphia, PA: SIAM, Philadelphia, PA · doi:10.1137/1.9780898719208
[2] Eriksson, K.; Johnson, C.; Thomée, V., Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér., 19, 4, 611-643 (1985) · Zbl 0589.65070 · doi:10.1051/m2an/1985190406111
[3] Ervin, V.; Roop, J., Variational formulation for the stationary fractional advection dispersion equation, Numer. Meth. Part. D. E., 22, 3, 558-576 (2006) · Zbl 1095.65118 · doi:10.1002/num.20112
[4] Evans, L.: Partial Differential Equations, 2nd Ed. American Mathematical Society (2010) · Zbl 1194.35001
[5] Ford, N.; Xiao, J.; Yan, Y., A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal., 14, 3, 454-474 (2018) · Zbl 1273.65142 · doi:10.2478/s13540-011-0028-2
[6] Gao, G.; Sun, Z., A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230, 3, 586-595 (2011) · Zbl 1211.65112 · doi:10.1016/j.jcp.2010.10.007
[7] Gao, G.; Sun, H.; Sun, Z., Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence, J. Comput. Phys., 280, 510-528 (2015) · Zbl 1349.65295 · doi:10.1016/j.jcp.2014.09.033
[8] Gorenflo, R., Kilbas, A., Mainardi, F. and Rogosin, S.: Mittag-Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics. Springer, Berlin (2014); 2nd Ed. (2020) · Zbl 1309.33001
[9] Karaa, S.; Mustapha, K.; Pani, A., Optimal error analysis of a FEM for fractional diffusion problems by energy arguments, J. Sci. Comput., 74, 1, 519-535 (2018) · Zbl 1398.65228 · doi:10.1007/s10915-017-0450-7
[10] Ke, R., Ng, M. and Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303(C), 203-211 (2015) · Zbl 1349.65404
[11] Kufner, A., Persson, L. and Samko, N.: Weighted Inequalities of Hardy Type. World Scientific Publishing Company (2017) · Zbl 1380.26001
[12] Langlands, T.; Henry, B., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 2, 719-736 (2005) · Zbl 1072.65123 · doi:10.1016/j.jcp.2004.11.025
[13] Li, B.; Luo, H.; Xie, X., A space-time finite element method for fractional wave problems, Numer. Algor., 85, 3, 1095-1121 (2020) · Zbl 1451.65149 · doi:10.1007/s11075-019-00857-w
[14] Li, B.; Luo, H.; Xie, X., Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data, SIAM J. Numer. Anal., 57, 2, 779-798 (2019) · Zbl 1419.65066 · doi:10.1137/18M118414X
[15] Li, B.; Wang, T.; Xie, X., Analysis of the L1 scheme for fractional wave equations with nonsmooth data, Comput. Math. Appl., 90, 1-12 (2021) · Zbl 1524.65563 · doi:10.1016/j.camwa.2021.03.006
[16] Li, B.; Wang, T.; Xie, X., Numerical analysis of a semilinear fractional diffusion equation, Comput. Math. Appl., 80, 2115-2134 (2020) · Zbl 1454.65035 · doi:10.1016/j.camwa.2020.09.008
[17] Li, B.; Wang, T.; Xie, X., Numerical analysis of two Galerkin discretizations with graded temporal grids for fractional evolution equations, J. Sci. Comput., 85, 3, 85-59 (2020) · Zbl 1456.65116 · doi:10.1007/s10915-020-01365-z
[18] Li, B.; Xie, X., Regularity of solutions to time fractional diffusion equations, Discrete Contin. Dyn. Syst. -B., 24, 3195-3210 (2019) · Zbl 1428.35666
[19] Li, X.; Xu, C., A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47, 3, 2108-2131 (2009) · Zbl 1193.35243 · doi:10.1137/080718942
[20] Li, Z.; Yan, Y., Error estimates of high-order numerical methods for solving time fractional partial differential equations, Fract. Calc. Appl. Anal., 21, 3, 746-774 (2018) · Zbl 1405.65098 · doi:10.1515/fca-2018-0039
[21] Lions, J.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications (1972), Berlin: Springer, Berlin · Zbl 0223.35039 · doi:10.1007/978-3-642-65217-2
[22] Luo, H.; Li, B.; Xie, X., Convergence analysis of a Petrov-Galerkin method for fractional wave problems with nonsmooth data, J. Sci. Comput., 80, 2, 957-992 (2019) · Zbl 1477.65161 · doi:10.1007/s10915-019-00962-x
[23] McLean, W., Regularity of solutions to a time-fractional diffusion equation, ANZIAM J., 52, 2, 123-138 (2010) · Zbl 1228.35266 · doi:10.1017/S1446181111000617
[24] McLean, W.; Mustapha, K., Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation, Numer. Algor., 52, 1, 69-88 (2009) · Zbl 1177.65194 · doi:10.1007/s11075-008-9258-8
[25] McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293(C), 201-217 (2015) · Zbl 1349.65469
[26] McLean, W.; Thomée, V., Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional order evolution, IMA J. Numer. Anal., 30, 208-230 (2010) · Zbl 1416.65381 · doi:10.1093/imanum/drp004
[27] McLean, W.; Thomée, V., Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equ. Appl., 22, 1, 57-94 (2010) · Zbl 1195.65122 · doi:10.1216/JIE-2010-22-1-57
[28] Mohebbi, A.; Abbaszadeh, M.; Dehghan, M., A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J. Comput. Phys., 240, 1, 36-48 (2013) · Zbl 1287.65064 · doi:10.1016/j.jcp.2012.11.052
[29] Mustapha, K., Time-stepping discontinuous Galerkin methods for fractional diffusion problems, Numer. Math., 130, 3, 497-516 (2015) · Zbl 1320.65144 · doi:10.1007/s00211-014-0669-2
[30] Mustapha, K.; Abdallah, B.; Furati, K., A discontinuous Petrov-Galerkin method for time-fractional diffusion equations, SIAM J. Numer. Anal., 52, 5, 2512-2529 (2014) · Zbl 1323.65109 · doi:10.1137/140952107
[31] Mustapha, K.; McLean, W., Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation, Numer. Algor., 56, 2, 159-184 (2011) · Zbl 1211.65127 · doi:10.1007/s11075-010-9379-8
[32] Mustapha, K.; McLean, W., Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 51, 1, 491-515 (2013) · Zbl 1267.26005 · doi:10.1137/120880719
[33] Mustapha, K.; McLean, W., Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation, IMA J. Numer. Anal., 32, 3, 906-925 (2012) · Zbl 1327.65177 · doi:10.1093/imanum/drr027
[34] Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 1, 426-447 (2011) · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[35] Samko, S.; Kilbas, A.; Marichev, O., Fractional Integrals and Derivatives: Theory and Applications (1993), Switzerland-USA etc: Gordon and Breach Science Publishers, Switzerland-USA etc · Zbl 0818.26003
[36] Schötzau, D.; Schwab, C., Time discretization of parabolic problems by the \(hp\)-version of the discontinuous Galerkin finite element method, SIAM J. Numer. Anal., 38, 3, 837-875 (2000) · Zbl 0978.65091 · doi:10.1137/S0036142999352394
[37] Stynes, M., Too much regularity may force too much uniqueness, Fract. Calc. Appl. Anal., 19, 6, 1554-1562 (2016) · Zbl 1353.35306 · doi:10.1515/fca-2016-0080
[38] Stynes, M.; O’Riordan, E.; Gracia, J., Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 2, 1057-1079 (2017) · Zbl 1362.65089 · doi:10.1137/16M1082329
[39] Tartar, L., An Introduction to Sobolev Spaces and Interpolation Spaces (2007), Berlin: Springer, Berlin · Zbl 1126.46001
[40] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems (2006), Berlin: Springer, Berlin · Zbl 1105.65102
[41] Wang, Y.; Yan, Y.; Yang, Y., Two high-order time discretization schemes for subdiffusion problems with nonsmooth data, Fract. Calc. Appl. Anal., 23, 5, 1349-1380 (2020) · Zbl 1474.65293 · doi:10.1515/fca-2020-0067
[42] Yan, Y.; Khan, M.; Ford, N., An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data, SIAM J. Numer. Anal., 56, 1, 210-227 (2018) · Zbl 1381.65070 · doi:10.1137/16M1094257
[43] Yang, Y.; Yan, Y.; Ford, N., Some time stepping methods for fractional diffusion problems with nonsmooth data, Comput. Methods Appl. Math., 18, 1, 129-146 (2018) · Zbl 1383.65097 · doi:10.1515/cmam-2017-0037
[44] Yuste, S., Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216, 264-274 (2006) · Zbl 1094.65085 · doi:10.1016/j.jcp.2005.12.006
[45] Yuste, S.; Acedo, L., An explicit finite difference method and a new von-Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 5, 1862-1874 (2005) · Zbl 1119.65379 · doi:10.1137/030602666
[46] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46, 2, 1079-1095 (2008) · Zbl 1173.26006 · doi:10.1137/060673114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.