Skip to main content
Log in

Convergence Analysis of a Petrov–Galerkin Method for Fractional Wave Problems with Nonsmooth Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper analyzes the convergence of a Petrov–Galerkin method for time fractional wave problems with nonsmooth data. Well-posedness and regularity of the weak solution to the time fractional wave problem are firstly established. Then an optimal convergence analysis with nonsmooth data is derived. Moreover, several numerical experiments are presented to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luchko, Y.: Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. Inter. J. Geomath. 1, 257–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Soliton Fract. 7(9), 1461–1477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mainardi, F.: Fractional diffusive waves. J. Comput. Acoust. 9(4), 1417–1436 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1998)

    MATH  Google Scholar 

  6. Bazhlekova, E.: Duhamel-type representation of the solutions of non-local boundary value problems for the fractional diffusion-wave equation. In: Proceedings of the 2nd International Workshop, Bulgarian Academy of Sciences, Sofia, pp. 32–40 (1998)

  7. Bazhlekova, E.: Fractional Evolution Equations in Banach Spaces. PhD thesis, Eindhoven University of Technology (2001)

  8. Sakamoto, K., Yamamoto, Y.: Initial value or boundary value problems for fractional diffusion wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  10. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci Comput. 38(1), A146–A170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, B., Luo, H., Xie, X.: A time-spectral algorithm for fractional wave problems. J. Sci. Comput. 77(2), 1164–1184 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, B., Luo, H., Xie, X.: A space-time finite element method for fractional wave problems. (2018). preprint, arXiv:1803.03437

  14. Lubich, C., Sloan, I., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65(213), 1–17 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sheng, C., Shen, J.: A space-time Petrov–Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theor. Meth. Appl. 11, 854–876 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with nonsmooth solutions in time direction. J. Sci. Comput. (2019). https://doi.org/10.1007/s10915-019-00943-0

  20. Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, J., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  22. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  23. Hackbusch, W.: Elliptic Differential Equations: Theory and Numerical Treatment. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  24. Yamamoto, M.: Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations. J. Math. Anal. Appl. 460(1), 365–381 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gorenflo, R., Yamamoto, M.: Operator theoretic treatment of linear Abel integral equations of first kind. Jpn. J. Ind. Appl. Math. 16(1), 137–161 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luchko, Y., Gorenflo, R., Yamamoto, M.: Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Lunardi, A.: Interpolation Theory. Edizioni della Normale, Pisa (2018)

    Book  MATH  Google Scholar 

  28. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, London (1993)

    MATH  Google Scholar 

  29. Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. SIAM J. Numer. Anal. 57(2), 779–798 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Part. D. E. 22(3), 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Demengel, F., Demengel, G.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer, London (2012)

    Book  MATH  Google Scholar 

  32. Agranovich, M.: Sobolev Spaces. Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  33. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16(4), 322–333 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  34. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  35. Clément, P.: Approximation by finite element functions using local regularization. RAIRO, Anal. Numer. 9, 77–84 (1975)

    MathSciNet  MATH  Google Scholar 

  36. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34(150), 441–463 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, B., Luo, H., Xie, X.: Error estimates of a discontinuous Galerkin method for time fractional diffusion problems with nonsmooth data. (2018). preprint, arXiv:1809.02015

  38. Ke, R., Ng, M., Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binjie Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by National Natural Science Foundation of China (11771312).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Li, B. & Xie, X. Convergence Analysis of a Petrov–Galerkin Method for Fractional Wave Problems with Nonsmooth Data. J Sci Comput 80, 957–992 (2019). https://doi.org/10.1007/s10915-019-00962-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00962-x

Keywords

Navigation