×

High and low perturbations of Choquard equations with critical reaction and variable growth. (English) Zbl 07481828

Summary: We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation \[ \begin{aligned} &- \Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u \\ &= \left( \int_{\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\lambda(x,y)} dy\right) |u|^{r(x)-2} u+g(x,u) \quad \text{in} \quad \mathbb{R}^N, \end{aligned} \] where the exponent \(r(\cdot) \) is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation \(g(\cdot ,\cdot) \) is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity \(g(\cdot ,\cdot) \) is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.

MSC:

47G20 Integro-differential operators
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences
Full Text: DOI

References:

[1] C. O. Alves, Existence of radial solutions for a class of \(p(x)\)-Laplacian equations with critical growth, Differential Integral Equations, 23, 113-123 (2010) · Zbl 1240.35182
[2] C. O. Alves and L. S. Tavares, A Hardy-Littlewood-Sobolev-type inequality for variable exponents and applications to quasilinear Choquard equations involving variable exponent, Mediterr. J. Math., 16 (2019), Paper No. 55, 27 pp. · Zbl 1414.35009
[3] V. I. Bogachev, Measure Theory, volume I, Springer-Verlag, Berlin, Heidelberg, 2007. · Zbl 1120.28001
[4] S. Chen; A. Fiscella; P. Pucci; X. Tang, Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differential Equations, 268, 2672-2716 (2020) · Zbl 1436.35078 · doi:10.1016/j.jde.2019.09.041
[5] S. Chen; X. Tang, On the planar Schrödinger-Poisson system with the axially symmetric potential, J. Differential Equations, 268, 945-976 (2020) · Zbl 1431.35030 · doi:10.1016/j.jde.2019.08.036
[6] M. Clapp; D. Salazar, Positive and sign-changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407, 1-15 (2013) · Zbl 1310.35114 · doi:10.1016/j.jmaa.2013.04.081
[7] M. D. Donsker; S. R. S. Varadhan, Asymptotics for the polaron, Comm. Pure Appl. Math., 36, 505-528 (1983) · Zbl 0538.60081 · doi:10.1002/cpa.3160360408
[8] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1, 443-474 (1979) · Zbl 0441.49011 · doi:10.1090/S0273-0979-1979-14595-6
[9] A. Elgart; B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60, 500-545 (2007) · Zbl 1113.81032 · doi:10.1002/cpa.20134
[10] H. Fröhlich, Theory of electrical breakdown in ionic crystal, Proc. Roy. Soc. Edinburgh Sect. A, 160, 230-241 (1937) · doi:10.1098/rspa.1937.0106
[11] Y. Fu; X. Zhang, Multiple solutions for a class of \(p(x)\)-Laplacian equations involving the critical exponent, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466, 1667-1686 (2010) · Zbl 1189.35128 · doi:10.1098/rspa.2009.0463
[12] M. Ghergu; S. D. Taliaferro, Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity, J. Differential Equations, 261, 189-217 (2016) · Zbl 1382.35113 · doi:10.1016/j.jde.2016.03.004
[13] D. Giulini and A. Großardt, The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields, Classical Quantum Gravity, 29 (2012), 215010, 25 pp. · Zbl 1266.83009
[14] K. R. W. Jones, Gravitational self-energy as the litmus of reality, Modern Physics Letters A, 10, 657-668 (1995) · doi:10.1142/S0217732395000703
[15] I. H. Kim; Y.-H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147, 169-191 (2015) · Zbl 1322.35009 · doi:10.1007/s00229-014-0718-2
[16] X. Li and S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math., 22 (2020), 1950023, 28 pp. · Zbl 1440.35139
[17] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math., 57, 93-105 (1976/77) · Zbl 0369.35022 · doi:10.1002/sapm197757293
[18] E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. · Zbl 0966.26002
[19] L. Ma; L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195, 455-467 (2010) · Zbl 1185.35260 · doi:10.1007/s00205-008-0208-3
[20] G. Mingione and V. D. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), Paper No. 125197, 41 pp. · Zbl 1467.49003
[21] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag, Berlin, 1983. · Zbl 0557.46020
[22] S. Pekar, Untersuchung Über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. · Zbl 0058.45503
[23] R. Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356, 1927-1939 (1998) · Zbl 1152.81659 · doi:10.1098/rsta.1998.0256
[24] R. Penrose, The Road to Reality. A Complete Guide to the Laws of the Universe, Alfred A. Knopf Inc., New York, 2005. · Zbl 1188.00007
[25] D. Qin; V. D. Rădulescu; X. Tang, Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations, J. Differential Equations, 275, 652-683 (2021) · Zbl 1456.35187 · doi:10.1016/j.jde.2020.11.021
[26] F. E. Schunck and E. W. Mielke, General relativistic boson stars, Classical Quantum Gravity, 20 (2003), R301-R356. · Zbl 1050.83002
[27] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics, vol. 34, Springer-Verlag, Berlin, 2008. · Zbl 1284.49004
[28] X. Tang; S. Chen; X. Lin; J. Yu, Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions, J. Differential Equations, 268, 4663-4690 (2020) · Zbl 1437.35224 · doi:10.1016/j.jde.2019.10.041
[29] J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50 (2009), 012905, 22 pp. · Zbl 1189.81061
[30] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. · Zbl 0856.49001
[31] M. Willem, Functional Analysis. Fundamentals and Applications, Cornerstones, Birkhäuser, Springer, New York, 2013. · Zbl 1284.46001
[32] J. Xia and Z.-Q. Wang, Saddle solutions for the Choquard equation, Calc. Var. Partial Differential Equations, 58 (2019), Art. 85, 30 pp. · Zbl 1418.35161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.