×

Quantitative logarithmic Sobolev inequalities and stability estimates. (English) Zbl 1355.60094

Summary: We establish an improved form of the classical logarithmic Sobolev inequality for the Gaussian measure restricted to probability densities which satisfy a Poincaré inequality. The result implies a lower bound on the deficit in terms of the quadratic Kantorovich-Wasserstein distance. We similarly investigate the deficit in the Talagrand quadratic transportation cost inequality this time by means of an \(L^1\)-Kantorovich-Wasserstein distance, optimal for product measures, and deduce a lower bound on the deficit in the logarithmic Sobolev inequality in terms of this metric. Applications are given in the context of the Bakry-Émery theory and the coherent state transform. The proofs combine tools from semigroup and heat kernel theory and optimal mass transportation.

MSC:

60H99 Stochastic analysis
60J60 Diffusion processes
49Q20 Variational problems in a geometric measure-theoretic setting
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes,, École d’Été de Probabilités de Saint-Flour, 1581, 1 (1994) · Zbl 0856.47026 · doi:10.1007/BFb0073872
[2] D. Bakry, A simple proof of the Poincaré inequality in a large class of probability measures including log-concave cases,, Elec. Comm. Prob., 13, 60 (2008) · Zbl 1186.26011 · doi:10.1214/ECP.v13-1352
[3] D. Bakry, Diffusions hypercontractives,, Séminaire de Probabilités XIX, 1123, 177 (1985) · Zbl 0561.60080 · doi:10.1007/BFb0075847
[4] M. Barchiesi, Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality,, to appear in Ann. Probab. (2015)
[5] G. Bianchi, A note on the Sobolev inequality,, J. Funct. Anal., 100, 18 (1991) · Zbl 0755.46014 · doi:10.1016/0022-1236(91)90099-Q
[6] D. Bakry, Analysis and geometry of Markov diffusion operators,, Grundlehren der mathematischen Wissenschaften (2014) · Zbl 1376.60002 · doi:10.1007/978-3-319-00227-9
[7] F. Barthe, Mass transport and variants of the logarithmic Sobolev inequality,, J. Geom. Anal., 18, 921 (2008) · Zbl 1170.46031 · doi:10.1007/s12220-008-9039-6
[8] S. Bobkov, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities,, J. Funct. Anal., 163, 1 (1999) · Zbl 0924.46027 · doi:10.1006/jfan.1998.3326
[9] S. Bobkov, Bounds on the deficit in the logarithmic Sobolev inequality,, J. Funct. Anal., 267, 4110 (2014) · Zbl 1301.26018 · doi:10.1016/j.jfa.2014.09.016
[10] L. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity,, Ann. of Math., 131, 129 (1990) · Zbl 0704.35045 · doi:10.2307/1971509
[11] L. Caffarelli, The regularity of mappings with a convex potential,, J. Amer. Math. Soc., 5, 99 (1992) · Zbl 0753.35031 · doi:10.1090/S0894-0347-1992-1124980-8
[12] E. Carlen, Some integral identities and inequalities for entire functions and their application to the coherent state transform,, J. Funct. Anal., 97, 231 (1991) · Zbl 0743.46018 · doi:10.1016/0022-1236(91)90022-W
[13] E. Carlen, Superadditivity of Fisher’s information and logarithmic Sobolev inequalities,, J. Funct. Anal., 101, 194 (1991) · Zbl 0732.60020 · doi:10.1016/0022-1236(91)90155-X
[14] M. Christ, A sharpened Hausdorff-Young inequality,, <a href=
[15] A. Cianchi, The sharp Sobolev inequality in quantitative form,, J. Eur. Math. Soc., 11, 1105 (2009) · Zbl 1185.46025 · doi:10.4171/JEMS/176
[16] D. Cordero-Erausquin, Some applications of mass transport to Gaussian type inequalities,, Arch. Rational Mech. Anal., 161, 257 (2002) · Zbl 0998.60080 · doi:10.1007/s002050100185
[17] G. De Philipis, \(W^{2,1}\) regularity of solutions to the Monge-Ampère equation,, Invent. Math., 192, 55 (2013) · Zbl 1286.35107 · doi:10.1007/s00222-012-0405-4
[18] R. Eldan, A two-sided estimate for the Gaussian noise stability deficit,, Invent. Math., 201, 561 (2015) · Zbl 1323.60035 · doi:10.1007/s00222-014-0556-6
[19] A. Figalli, A sharp stability result for the relative isoperimetric inequality inside convex cones,, J. Geom. Anal., 23, 938 (2013) · Zbl 1262.49045 · doi:10.1007/s12220-011-9270-4
[20] A. Figalli, Quantitative stability for the Brunn-Minkowski inequality,, J. Eur. Math. Soc. · Zbl 1380.52010
[21] A. Figalli, A refined Brunn-Minkowski inequality for convex sets,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 2511 (2009) · Zbl 1192.52015 · doi:10.1016/j.anihpc.2009.07.004
[22] A. Figalli, A mass transportation approach to quantitative isoperimetric inequalities,, Invent. Math., 182, 167 (2010) · Zbl 1196.49033 · doi:10.1007/s00222-010-0261-z
[23] A. Figalli, Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation,, Adv. Math., 242, 80 (2013) · Zbl 1286.46035 · doi:10.1016/j.aim.2013.04.007
[24] J. Fontbona, A variational approach to some transport inequalities,, preprint (2015). (2015)
[25] N. Fusco, The sharp quantitative isoperimetric inequality,, Ann. of Math., 168, 941 (2008) · Zbl 1187.52009 · doi:10.4007/annals.2008.168.941
[26] A. Figalli, Gradient stability for the Sobolev inequality: the case \(p \geq 2\),, preprint (2015) · Zbl 1346.49068
[27] L. Gross, Logarithmic Sobolev inequalities,, Amer. J. Math., 97, 1061 (1975) · Zbl 0318.46049 · doi:10.2307/2373688
[28] E. Indrei, A sharp lower bound on the polygonal isoperimetric deficit,, Proc. Amer. Math. Soc., 144, 3115 (2016) · Zbl 1345.52005 · doi:10.1090/proc/12947
[29] E. Indrei, A quantitative log-Sobolev inequality for a two parameter family of functions,, Int. Math. Res. Not. IMRN, 5563 (2014) · Zbl 1317.46023
[30] E. Indrei, On the stability of the polygonal isoperimetric inequality,, Advances in Mathematics, 276, 62 (2015) · Zbl 1316.35007 · doi:10.1016/j.aim.2015.02.013
[31] M. Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited,, Séminaire de Probabilités XXXV, 1755, 167 (2001) · Zbl 0979.60096 · doi:10.1007/978-3-540-44671-2_13
[32] J. Lehec, Representation formula for the entropy and functional inequalities,, Ann. IHP: Probab. Stat., 49, 885 (2013) · Zbl 1279.39011 · doi:10.1214/11-AIHP464
[33] E. Lieb, Proof of an entropy conjecture of Wehrl,, Comm. Math. Phys., 62, 35 (1978) · Zbl 0385.60089 · doi:10.1007/BF01940328
[34] E. Lieb, Thomas-Fermi and related theories of atoms and molecules,, Rev. Mod. Phys., 53, 603 (1981) · Zbl 1049.81679 · doi:10.1103/RevModPhys.53.603
[35] R. J. McCann, Existence and uniqueness of monotone measure-preserving maps,, Duke Math. J., 80, 309 (1995) · Zbl 0873.28009 · doi:10.1215/S0012-7094-95-08013-2
[36] C. Mooney, Partial regularity for singular solutions to the Monge-Ampere equation,, Comm. Pure Appl. Math., 68, 1066 (2015) · Zbl 1317.35079 · doi:10.1002/cpa.21534
[37] F. Otto, Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173, 361 (2000) · Zbl 0985.58019 · doi:10.1006/jfan.1999.3557
[38] I. Segal, Mathematical characterization of the physical vacuum of the physical vacuum for a linear Bose-Einstein field,, Illinois J. Math., 6, 500 (1962) · Zbl 0106.42804
[39] I. Segal, <em>Mathematical Problems in Relativistic Quantum Mechanics,</em>, American Mathematical Society (1963) · Zbl 0112.45307
[40] I. Segal, Construction of non-linear local quantum processes I,, Ann. of Math., 92, 462 (1970) · Zbl 0213.40904 · doi:10.2307/1970628
[41] M. Talagrand, Transportation cost for Gaussian and other product measures,, Geom. Funct. Anal., 6, 587 (1996) · Zbl 0859.46030 · doi:10.1007/BF02249265
[42] C. Villani, <em>Topics in Optimal Transportation</em>,, Graduate Studies in Mathematic (2003) · Zbl 1013.00028 · doi:10.1007/b12016
[43] C. Villani, Optimal transport. Old and new,, Grundlehren der mathematischen Wissenschaften (2009) · Zbl 1156.53003 · doi:10.1007/978-3-540-71050-9
[44] A. Wehrl, On the relation between classical and quantum mechanical entropy,, Rep. Mat. Phys., 16, 353 (1979) · Zbl 0444.60100 · doi:10.1016/0034-4877(79)90070-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.