×

Representation formula for the entropy and functional inequalities. (English. French summary) Zbl 1279.39011

The purpose of the present paper is to prove a representation formula for the Gaussian relative entropy, both in \(\mathbb{R}^d\) and in the Wiener space, providing the entropy counterpats of C. Borell’s formula for the Laplace transform. All these formulas have a common feature: Girsanov’s theorem. However, the author’s approach is somewhat different from that of C. Borell [Potential Anal. 12, No. 1, 49–71 (2000; Zbl 0976.60065)] and M. Boué and P. Dupuis [Ann. Probab. 26, No. 4, 1641–1659 (1998; Zbl 0936.60059)]: it draws a connection with the work of H. Föllmer [Time reversal on Wiener space. Stochastic processes – mathematics and physics, Proc. 1st BiBoS-Symp., Bielefeld/Ger. 1984, Lect. Notes Math. 1158, 119–129 (1986; Zbl 0582.60078) and Random fields and diffusion processes. Calcul des probabilités, Éc. d’Été, Saint-Flour/Fr. 1985–87, Lect. Notes Math. 1362, 101–203 (1988; Zbl 0661.60063)] which makes the whole argument more simple. As an application, unified new proofs of a number of Gaussian inequalities (such as: the tranportation cost inequality; logarithmic Sobolev inequality; Shannon’s inequality; Brascamp-Lieb inequality; reversed Brascamp-Lieb inequality) are offered.

MSC:

39B62 Functional inequalities, including subadditivity, convexity, etc.
60J65 Brownian motion

References:

[1] K. Ball. Convex geometry and functional analysis. In Handbook of the Geometry of Banach Spaces , Vol. 1 161-194. W. B. Johnson and J. Lindenstrauss (Eds). North-Holland, Amsterdam, 2001. · Zbl 1017.46004 · doi:10.1016/S1874-5849(01)80006-1
[2] F. Barthe. On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134 (1998) 335-361. · Zbl 0901.26010 · doi:10.1007/s002220050267
[3] F. Barthe and N. Huet. On Gaussian Brunn-Minkowski inequalities. Studia Math. 191 (2009) 283-304. · Zbl 1166.60014 · doi:10.4064/sm191-3-9
[4] F. Baudoin. Conditioned stochastic differential equations: Theory, examples and application to finance. Stochastic Process. Appl. 100 (2002) 109-145. · Zbl 1058.60040 · doi:10.1016/S0304-4149(02)00109-6
[5] C. Borell. Diffusion equations and geometric inequalities. Potential Anal. 12 (2000) 49-71. · Zbl 0976.60065 · doi:10.1023/A:1008641618547
[6] M. Boué and P. Dupuis. A variational representation for certain functionals of Brownian motion. Ann. Probab. 26 (1998) 1641-1659. · Zbl 0936.60059 · doi:10.1214/aop/1022855876
[7] H. J. Brascamp and E. H. Lieb. Best constants in Young’s inequality, its converse and its generalization to more than three functions. Adv. Math. 20 (1976) 151-173. · Zbl 0339.26020 · doi:10.1016/0001-8708(76)90184-5
[8] M. Capitaine, E. P. Hsu and M. Ledoux. Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Commun. Probab. 2 (1997) 71-81. · Zbl 0890.60045 · doi:10.1214/ECP.v2-986
[9] E. Carlen and D. Cordero-Erausquin. Subadditivity of the entropy and its relation to Brascamp-Lieb type inequalities. Geom. Funct. Anal. 19 (2009) 373-405. · Zbl 1231.26015 · doi:10.1007/s00039-009-0001-y
[10] D. Cordero-Erausquin and M. Ledoux. The geometry of Euclidean convolution inequalities and entropy. Proc. Amer. Math. Soc. 138 (2010) 2755-2769. · Zbl 1196.42007 · doi:10.1090/S0002-9939-10-10304-9
[11] A. Dembo, T. M. Cover and J. A. Thomas. Information theoretic inequalities. IEEE Trans. Inform. Theory 37 (1991) 1501-1518. · Zbl 0741.94001 · doi:10.1109/18.104312
[12] D. Feyel and A. S. Üstünel. Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris 334 (2002) 1025-1028. · Zbl 1036.60004 · doi:10.1016/S1631-073X(02)02326-9
[13] W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions , 2nd edition. Stochastic Modelling and Applied Probability 25 . Springer, New York, 2006. · Zbl 1105.60005
[14] H. Föllmer. An entropy approach to the time reversal of diffusion processes. In Stochastic Differential Systems (Marseille-Luminy, 1984) 156-163. Lecture Notes in Control and Inform. Sci. 69 . Springer, Berlin, 1985. · Zbl 0562.60083
[15] H. Föllmer. Time reversal on Wiener space. In Stochastic Processes - Mathematics and Physics (Bielefeld, 1984) 119-129. Lecture Notes in Math. 1158 . Springer, Berlin, 1986. · Zbl 0582.60078
[16] H. Föllmer. Random fields and diffusion processes. In École d’Été de Probabilités de Saint-Flour XV-XVII, 1985-87 101-203. Lecture Notes in Math. 1362 . Springer, Berlin, 1988. · Zbl 0661.60063
[17] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975) 1061-1083. · Zbl 0318.46049 · doi:10.2307/2373688
[18] R. S. Liptser and A. N. Shiryayev. Statistics of Random Processes, Vol. 1: General Theory. Applications of Mathematics 5 . Springer, New York, 1977. · Zbl 0364.60004
[19] D. Nualart. The Malliavin Calculus and Related Topics , 2nd edition. Probability and Its Applications . Springer, Berlin, 2006. · Zbl 1099.60003
[20] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales, Vol. 2: Itô Calculus. Cambridge Mathematical Library . Cambridge Univ. Press, Cambridge, 2000. · Zbl 0977.60005
[21] K. T. Sturm. On the geometry of metric measure spaces. I. Acta Math. 196 (2006) 65-131. · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[22] M. Talagrand. Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6 (1996) 587-600. · Zbl 0859.46030 · doi:10.1007/BF02249265
[23] S. R. S. Varadhan. Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46 . SIAM, Philadelphia, 1984. · Zbl 0549.60023
[24] C. Villani. Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338 . Springer, Berlin, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.