×

Explicit Burgess-like subconvex bounds for \(\mathrm{GL_2 \times GL_1}\). (English) Zbl 1469.11127

Summary: We make the polynomial dependence on the fixed representation \(\pi\) in our previous subconvex bound of \(L(\frac{1}{2}, \pi \otimes \chi)\) for \(\mathrm{GL_2 \times GL}_1\) explicit, especially in terms of the usual conductor \(\mathbf{C}(\pi_{\text{fin}})\). There is no clue that the original choice, due to P. Michel and A. Venkatesh [Publ. Math., Inst. Hautes Étud. Sci. 111, 171–271 (2010; Zbl 1376.11040)], of the test function at the infinite places should be the optimal one. Hence we also investigate a possible variant of such local choices in some special situations.

MSC:

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols

Citations:

Zbl 1376.11040
Full Text: DOI

References:

[1] E. Assing, On sup-norm bounds. Part I: Ramified Maass newforms over number fields, preprint (2017), https://arxiv.org/abs/1710.00362v1.
[2] V. Blomer and G. Harcos, Hybrid bounds for twisted L-functions, J. Reine Angew. Math. 621 (2008), 53-79. · Zbl 1193.11044
[3] V. Blomer and G. Harcos, Twisted L-functions over number fields and Hilbert’s eleventh problem, Geom. Funct. Anal. 20 (2010), no. 1, 1-52. · Zbl 1221.11121
[4] V. Blomer and G. Harcos, Addendum: Hybrid bounds for twisted L-functions, J. Reine Angew. Math. 694 (2014), 241-244. · Zbl 1296.11047
[5] V. Blomer, G. Harcos, P. Maga and D. Milićević, The sup-norm problem for \(\text{GL}(2)\) over number fields, preprint (2016), https://arxiv.org/abs/1605.09360v1.
[6] D. Bump, Automorphic Forms and Representations, Cambridge Stud. Adv. Math. 55, Cambridge University Press, Cambridge, 1997. · Zbl 0868.11022
[7] C. J. Bushnell and G. Henniart, An upper bound on conductors for pairs, J. Number Theory 65 (1997), no. 2, 183-196. · Zbl 0884.11049
[8] L. Clozel and E. Ullmo, Équidistribution de mesures algébriques, Compos. Math. 141 (2005), no. 5, 1255-1309. · Zbl 1077.22014
[9] M. Cowling, U. Haagerup and R. Howe, Almost \(L^2\) matrix coefficients, J. Reine Angew. Math. 387 (1988), 97-110. · Zbl 0638.22004
[10] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92 (1988), no. 1, 73-90. · Zbl 0628.10029
[11] W. Duke, J. Friedlander and H. Iwaniec, Bounds for automorphic L-functions, Invent. Math. 112 (1993), no. 1, 1-8. · Zbl 0765.11038
[12] W. Duke, J. B. Friedlander and H. Iwaniec, Bounds for automorphic L-functions. II, Invent. Math. 115 (1994), no. 2, 219-239. · Zbl 0812.11032
[13] W. Duke, J. B. Friedlander and H. Iwaniec, Bounds for automorphic L-functions. III, Invent. Math. 143 (2001), no. 2, 221-248. · Zbl 1163.11325
[14] W. Duke, J. B. Friedlander and H. Iwaniec, The subconvexity problem for Artin L-functions, Invent. Math. 149 (2002), no. 3, 489-577. · Zbl 1056.11072
[15] A. Erdélyi, Asymptotic Expansions, Dover Publications, New York, 1956. · Zbl 0070.29002
[16] L. C. Evans and M. Zworski, Lectures on semiclassical analysis (version 0.2).
[17] S. Gelbart and H. Jacquet, A relation between automorphic representations of \(\text{GL}(2)\) and \(\text{GL}(3)\), Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), no. 4, 471-542. · Zbl 0406.10022
[18] S. S. Gelbart, Automorphic forms on adèle groups, Ann. of Math. Stud. 83, Princeton University Press, Princeton, 1975. · Zbl 0329.10018
[19] R. Godement, Notes on Jacquet-Langlands’ Theory, The Institute for Advanced Study, , 1970.
[20] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman, Ann. of Math. (2) 140 (1994), no. 1, 161-181. · Zbl 0814.11032
[21] Y. Hu, P. D. Nelson and A. Saha, Some analytic aspects of automorphic forms on \(\rm GL(2)\) of minimal type, Comment. Math. Helv. 94 (2019), no. 4, 767-801. · Zbl 1443.11062
[22] A. Ichino, Trilinear forms and the central values of triple product L-functions, Duke Math. J. 145 (2008), no. 2, 281-307. · Zbl 1222.11065
[23] H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math. 349 (1984), 136-159. · Zbl 0527.10021
[24] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), no. 2, 385-401. · Zbl 0606.10017
[25] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. · Zbl 1059.11001
[26] H. Iwaniec and P. Michel, The second moment of the symmetric square L-functions, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 465-482. · Zbl 1075.11040
[27] H. Jacquet, Archimedean Rankin-Selberg integrals, Automorphic Forms and L-Functions II. Local Aspects, Contemp. Math. 489, American Mathematical Society, Providence (2009), 57-172. H. Jacquet and R. P. Langlands, Automorphic Forms on \(\text{GL}(2)\), Lecture Notes in Math. 114, Springer, Berlin, 1970. · Zbl 1250.11051
[28] H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), no. 2, 199-214. · Zbl 0443.22013
[29] H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367-464. · Zbl 0525.22018
[30] A. Knightly and C. Li, Traces of Hecke Operators, Math. Surveys Monogr. 133, American Mathematical Society, Providence, 2006. · Zbl 1120.11024
[31] S. Lang, Algebraic Number Theory, 2nd ed., Grad. Texts in Math. 110, Springer, New York, 2003.
[32] W. Z. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on \(\rm PSL}_2(\mathbf{Z})\backslash\mathbf{H}^2 \), Publ. Math. Inst. Hautes Études Sci. 81 (1995), 207-237. · Zbl 0852.11024
[33] P. Michel and A. Venkatesh, The subconvexity problem for \(\text{GL}_2 \), Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171-271. · Zbl 1376.11040
[34] P. D. Nelson, A. Pitale and A. Saha, Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels, J. Amer. Math. Soc. 27 (2014), no. 1, 147-191. · Zbl 1322.11051
[35] A. A. Popa, Whittaker newforms for Archimedean representations, J. Number Theory 128 (2008), no. 6, 1637-1645. · Zbl 1146.11030
[36] D. Ramakrishnan, Modularity of the Rankin-Selberg L-series, and multiplicity one for \(\text{SL}(2)\), Ann. of Math. (2) 152 (2000), no. 1, 45-111. · Zbl 0989.11023
[37] D. Ramakrishnan and R. J. Valenza, Fourier Analysis on Number Fields, Grad. Texts in Math. 186, Springer, New York, 1999. · Zbl 0916.11058
[38] A. Saha, Hybrid sup-norm bounds for Maass newforms of powerful level, Algebra Number Theory 11 (2017), no. 5, 1009-1045. · Zbl 1432.11044
[39] A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2) 172 (2010), no. 2, 989-1094. · Zbl 1214.11051
[40] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944. · Zbl 0063.08184
[41] T. C. Watson, Rankin Triple Products and Quantum Chaos, ProQuest LLC, Ann Arbor, 2002; Ph.D. thesis, Princeton University, 2002.
[42] R. Wong, Asymptotic expansions of Hankel transforms of functions with logarithmic singularities, Comp. Math. Appl. 3 (1977), 271-289. · Zbl 0364.44002
[43] H. Wu, Burgess-like subconvex bounds for \(\text{GL}_2\times\text{GL}_1 \), Geom. Funct. Anal. 24 (2014), no. 3, 968-1036. · Zbl 1376.11037
[44] H. Wu, Explicit subconvexity for \(\text{GL}_2\) and some applications (Appendix with N. Andersen), preprint (2018), https://arxiv.org/abs/1812.04391.
[45] H. Wu, Burgess-like subconvexity for \(\text{GL}_1 \), Compos. Math. 155 (2019), no. 8, 1457-1499. · Zbl 1471.11162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.