×

Plus/minus \(p\)-adic \(L\)-functions for Hilbert modular forms. (English) Zbl 1302.11088

The main idea, which is not that different from Pollack’s idea [R. Pollack, Duke Math. J. 118, No. 3, 523–558 (2003; Zbl 1074.11061)], is to analyse the growth conditions of the reviewer’s \(p\)-adic \(L\)-functions for Hilbert modular forms for different choices at \(p\)-Frobenius roots [Ann. Inst. Fourier 44, No. 4, 1025–1041 (1994; Zbl 0808.11035)].
Let us note that B. Zhang [J. Number Theory 131, No. 3, 419–439 (2011; Zbl 1219.11135)] also used the \(p\)-adic \(L\)-function constructed by the reviewer to give plus/minus \(p\)-adic \(L\)-functions for Hilbert modular forms.

MSC:

11R23 Iwasawa theory
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11S40 Zeta functions and \(L\)-functions
Full Text: DOI

References:

[1] Buzzard, K., Potential modularity — a survey · Zbl 1320.11048
[2] Dabrowski, A., \(p\)-Adic \(L\)-functions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble), 44, 4, 1025-1041 (1994) · Zbl 0808.11035
[3] Darmon, H., Rational Points on Modular Elliptic Curves, CBMS Reg. Conf. Ser. Math., vol. 101 (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI, xii+129 pp., published for the Conference Board of the Mathematical Sciences, Washington, DC · Zbl 1057.11034
[4] Greenberg, R., Introduction to Iwasawa theory for elliptic curves, (Arithmetic Algebraic Geometry. Arithmetic Algebraic Geometry, Park City, UT, 1999. Arithmetic Algebraic Geometry. Arithmetic Algebraic Geometry, Park City, UT, 1999, IAS/Park City Math. Ser., vol. 9 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 407-464 · Zbl 1002.11048
[5] Iovita, A.; Pollack, R., Iwasawa theory of elliptic curves at supersingular primes over \(Z_p\)-extensions of number fields, J. Reine Angew. Math., 598, 71-103 (2006) · Zbl 1114.11053
[6] Kisin, M., Modularity for Some Geometric Galois Representations, \(L\)-functions and Galois Representations, London Math. Soc. Lecture Note Ser., vol. 320 (2007), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, with an appendix by Ofer Gabber, pp. 438-470 · Zbl 1171.11035
[7] Kobayashi, S., Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., 152, 1, 1-36 (2003) · Zbl 1047.11105
[8] Manin, Ju. I., Non-Archimedean integration and \(p\)-adic Jacquet-Langlands \(L\)-functions, Uspekhi Mat. Nauk, 31, 1, 5-54 (1976), (in Russian) · Zbl 0348.12016
[9] Mazur, B.; Swinnerton-Dyer, P., Arithmetic of Weil curves, Invent. Math., 25, 1-61 (1974) · Zbl 0281.14016
[10] Lazard, M., Les zéros des fonctions analytiques dʼune variable sur un corps valué complet, Inst. Hautes Études Sci. Publ. Math., 14, 47-75 (1962), (in French) · Zbl 0119.03701
[11] Shimura, G., The special values of zeta functions associated with Hilbert modular forms, Duke Math. J., 45, 637-679 (1978) · Zbl 0394.10015
[12] Silverman, J., Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math., vol. 151 (1994), Springer-Verlag: Springer-Verlag New York, xiv+525 pp · Zbl 0911.14015
[13] Pollack, R., On the \(p\)-adic \(L\)-functions of a modular form at a supersingular prime, Duke Math. J., 118, 3, 523-558 (2003) · Zbl 1074.11061
[14] Pollack, R.; Rubin, K., The main conjecture for CM elliptic curves at supersingular primes, Ann. of Math. (2), 159, 1, 447-464 (2004) · Zbl 1082.11035
[15] Višik, M. M., Non-Archimedean measures connected with Dirichlet series, Math. USSR Sbornik, 28, 2 (1976) · Zbl 0369.14010
[16] Washington, L., Introduction to Cyclotomic Fields, Grad. Texts in Math., vol. 83 (1997), Springer · Zbl 0966.11047
[17] Yoshida, H., On the zeta functions of Shimura varieties and periods of Hilbert modular forms, Duke Math. J., 75, 1, 121-191 (1994) · Zbl 0823.11018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.