×

Two-bridge knots admit no purely cosmetic surgeries. (English) Zbl 1484.57005

Given a knot exterior, a natural problem is to determine whether different Dehn fillings on its boundary may yield homeomorphic oriented manifolds. If this situation happens, the homeomorphic manifolds are said to be obtained from each other via purely cosmetic Dehn surgery.
Recent work of J. Hanselman [“Heegaard Floer homology and cosmetic surgeries in \(S^3\)”, Preprint, arXiv:1906.06773, to appear in J. Eur. Math. Soc.] provides necessary conditions for slopes on knots in the \(3\)-sphere to give rise to cosmetic surgeries. Building on his results, the authors analyse in detail three classes of knots, that is \(2\)-bridge knots, alternating fibred knots, and alternating pretzel knots, and prove that they admit no purely cosmetic surgery.
The strategy of the proof is to exploit different types of knot invariants to establish which knots in these classes fulfill Hanselman’s conditions. For the two latter classes, the authors show that the knots never fulfill the conditions. The situation is more involved for \(2\)-bridge knots, for which it is necessary to distinguish the manifolds obtained by surgery on potential cosmetic slopes by using \(3\)-manifolds invariants, like Casson’s \(SL(2,{\mathbb C})\) one.
In the study of \(2\)-bridge knots, results on cosmetic surgery by K. Ichihara and Z. Wu [Commun. Anal. Geom. 27, No. 5, 1087–1104 (2019; Zbl 1436.57005)] are also used.

MSC:

57K10 Knot theory
57K31 Invariants of 3-manifolds (including skein modules, character varieties)
57K30 General topology of 3-manifolds

Citations:

Zbl 1436.57005

References:

[1] 10.2140/agt.2012.12.2095 · Zbl 1267.57015 · doi:10.2140/agt.2012.12.2095
[2] 10.1515/crll.1990.405.181 · doi:10.1515/crll.1990.405.181
[3] 10.1016/0040-9383(88)90028-6 · Zbl 0669.57003 · doi:10.1016/0040-9383(88)90028-6
[4] 10.2307/1970181 · Zbl 0111.35803 · doi:10.2307/1970181
[5] 10.1016/S0040-9383(99)00083-X · Zbl 0979.57006 · doi:10.1016/S0040-9383(99)00083-X
[6] 10.1007/BF01388971 · Zbl 0602.57002 · doi:10.1007/BF01388971
[7] 10.32917/hmj/1520478021 · Zbl 1430.57002 · doi:10.32917/hmj/1520478021
[8] 10.4310/CAG.2019.v27.n5.a3 · Zbl 1436.57005 · doi:10.4310/CAG.2019.v27.n5.a3
[9] 10.4310/CAG.2020.v28.n2.a4 · Zbl 1446.57005 · doi:10.4310/CAG.2020.v28.n2.a4
[10] ; Jong, Osaka J. Math., 46, 353 (2009) · Zbl 1168.57006
[11] 10.1090/amsip/002.2/02 · doi:10.1090/amsip/002.2/02
[12] 10.1016/j.topol.2020.107317 · Zbl 1454.57006 · doi:10.1016/j.topol.2020.107317
[13] 10.1016/j.aim.2004.10.015 · Zbl 1080.57015 · doi:10.1016/j.aim.2004.10.015
[14] ; Mattman, Osaka J. Math., 45, 471 (2008) · Zbl 1147.57009
[15] 10.1016/0040-9383(84)90023-5 · Zbl 0525.57003 · doi:10.1016/0040-9383(84)90023-5
[16] 10.2969/jmsj/01010094 · Zbl 0084.19301 · doi:10.2969/jmsj/01010094
[17] 10.2969/jmsj/01030235 · Zbl 0106.16701 · doi:10.2969/jmsj/01030235
[18] 10.2307/2373107 · Zbl 0117.17201 · doi:10.2307/2373107
[19] 10.2307/2372940 · Zbl 0117.41001 · doi:10.2307/2372940
[20] ; Przytycki, Bull. Polish Acad. Sci. Math., 37, 559 (1989) · Zbl 0757.57010
[21] 10.1090/S0002-9939-01-05823-3 · Zbl 0971.57012 · doi:10.1090/S0002-9939-01-05823-3
[22] 10.4064/fm200-1-1 · Zbl 1190.57008 · doi:10.4064/fm200-1-1
[23] 10.1007/BF01258439 · Zbl 0665.57008 · doi:10.1007/BF01258439
[24] 10.4064/fm184-0-17 · Zbl 1064.57009 · doi:10.4064/fm184-0-17
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.