×

Dynamics and control of variable geometry truss manipulator. (English) Zbl 1374.70020

Summary: Variable geometry truss manipulator (VGTM) has potential to work in the future space applications, of which a dynamic model is important to dynamic analysis and control of the system. In this paper, an approach is presented to model the dynamic equations of a VGTM by independent variables, which consists of two double-octahedral truss units and a 3-revolute-prismatic-spherical (3-RPS) parallel manipulator. In this approach, the kinematic recursive relations of two adjacent bodies and geometric constrains are used to deduce the kinematic equations of the VGTM, and Jourdain’s velocity variation principle is adopted to establish the dynamic equations of the system. The validity of the proposed dynamic model is verified by comparison of numerical simulations with the software ADAMS. Besides, an active controller for trajectory tracking of the system is designed by the computed torque method. The effectiveness of the controller is numerically proved.

MSC:

70E60 Robot dynamics and control of rigid bodies

Software:

Adams
Full Text: DOI

References:

[1] Miura, K., Furuya, H., and Suzuki, K. Variable geometry truss and its application to deployable truss and space crane arm. Acta Astronautica, 12(7/8), 599-607 (1985) · doi:10.1016/0094-5765(85)90131-6
[2] Miura, K. and Furuya, H. Adaptive structure concept for future space applications. AIAA Journal, 26(8), 995-1002 (1988) · doi:10.2514/3.10002
[3] Hughes, P. C., Sincarsin, W. G., and Carroll, K. A. Trussarm — a variable geometry truss manipulator. Journal of Intelligent Material System and Structures, 2(2), 148-160 (1991) · doi:10.1177/1045389X9100200202
[4] Naccarato, F. and Hughes, P. An inverse kinematics algorithm for a highly redundant variable geometry truss manipulator. Proceedings of the 3rd Annual Conference on Aerospace Computational Control, 1, 407-420 (1989)
[5] Hertz, R. B. and Hughes, P. C. Forward kinematics of a 3-DOF variable-geometry-truss manipulator. Computational Kinematics, part 6, Springer, Netherlands, 241-250 (1993)
[6] Furuya, H. and Higashiyama, K. Dynamics of closed linked variable geometry truss manipulators. Acta Astronautica, 36(5), 251-259 (1995) · doi:10.1016/0094-5765(95)00104-8
[7] Huang, S. Y., Natori, M. C., and Miura, K. Motion control of free-floating variable geometry truss part 1: kinematics. Journal of Guidance, Control, and Dynamics, 19(4), 756-763 (1996) · Zbl 0878.70002 · doi:10.2514/3.21696
[8] Huang, S. Y., Natori, M. C., and Miura, K. Motion control of free-floating variable geometry truss, part 2: inverse kinematics. Journal of Guidance, Control, and Dynamics, 19(4), 764-771 (1996) · Zbl 0891.70018 · doi:10.2514/3.21697
[9] Tsou, P. and Shen, M. H. H. Motion control of adaptive truss structures using fuzzy rules. Computer-Aided Civil and Infrastructure Engineering, 11(4), 275-281 (1996) · doi:10.1111/j.1467-8667.1996.tb00329.x
[10] Xu, L. J., Tian, G. Y., Duan, Y., and Yang, S. X. Inverse kinematic analysis for triple-octahedron variable-geometry truss manipulators. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(2), 247-251 (2001)
[11] MacAreno, L. M., Angulo, C., Lopez, D., and Agirrebeitia, J. Analysis and characterization of the behavior of a variable geometry structure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(11), 1427-1434 (2007) · Zbl 1124.60048
[12] Aguirrebeitia, J., Angulo, C., Macareno, L. M., and Avil´e, R. A metamodeling technique for variable geometry trusses design via equivalent parametric macroelements. Journal of Mechanical Design, 131(10), 104501 (2009) · doi:10.1115/1.3202008
[13] Bilbao, A., Avilés, R., Aguirrebeitia, J., and Bustos, I. F. Eigensensitivity-based optimal damper location in variable geometry trusses. AIAA Journal, 47(3), 576-591 (2009) · doi:10.2514/1.37353
[14] Bilbao, A., Avilés, R., Aguirrebeitia, J., and Bustos, I. F. Eigensensitivity analysis in variable geometry trusses. AIAA Journal, 49(7), 1555-1559 (2011) · doi:10.2514/1.J050633
[15] Bilbao, A., Avilés, R., Aguirrebeitia, J., and Bustos, I. F. A reduced eigenproblem formulation for variable geometry trusses. Finite Elements in Analysis and Design, 50, 134-141 (2012) · doi:10.1016/j.finel.2011.09.004
[16] Haug, E. J. Computer-Aided Kinematics and Dynamics of Mechanical Systems, Allyn and Bacon, Boston (1989)
[17] Wittenburg, J. Dynamics of Multibody Systems, Springer, Berlin (2007) · Zbl 1131.70001
[18] Qi, Z. H., Xu, Y. S., Luo, X. M., and Yao, S. J. Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Multibody System Dynamics, 24(2), 133-166 (2010) · Zbl 1376.70016 · doi:10.1007/s11044-010-9213-z
[19] Liu, X. F., Li, H. Q., Chen, Y. J., and Cai, G. P. Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm. Multibody System Dynamics, 33(3), 315-332 (2015) · Zbl 1391.70017 · doi:10.1007/s11044-014-9434-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.