×

On the dynamics of small-sized structures. (English) Zbl 1476.74060

Summary: In this study, free vibration analyses of small-scaled trusses and frames are firstly carried out based on nonlocal elasticity of Eringen. Nonlocal matrix motion formulation is derived by using linear algebraic equations. Finite element method based weighted residual is utilized to solve the resulting equations. Various numerical studies are presented for nondimensional natural frequencies of different truss and frame models. A detailed parametric study is performed to investigate the influences of nonlocal parameter, geometric properties, direction angle, mode numbers, and length-to-diameter ratio on the natural frequencies of micro/nano trusses and frames. It is revealed that there is a significant relationship between the size-dependent dynamic response of these structures and the geometrical and structural properties of them.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74B05 Classical linear elasticity
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Adhikari, S.; Murmu, T.; McCarthy, M. A., Dynamic finite element analysis of axially vibrating nonlocal rods, Finite Elements in Analysis and Design, 63, 42-50 (2013) · Zbl 1282.74044
[2] Adhikari, S.; Murmu, T.; McCarthy, M. A., Frequency domain analysis of nonlocal rods embedded in an elastic medium, Physica E-Low-Dimensional Systems & Nanostructures, 59, 33-40 (2014)
[3] Akgöz, B.; Civalek, Ö., Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, International Journal of Engineering Science, 49, 1268-1280 (2011) · Zbl 1423.74338
[4] Akgöz, B.; Civalek, Ö., A size-dependent shear deformation beam model based on the strain gradient elasticity theory, International Journal of Engineering Science, 70, 1-14 (2013) · Zbl 1423.74452
[5] Akgöz, B.; Civalek, Ö., Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium, International Journal of Engineering Science, 85, 90-104 (2014)
[6] Akgöz, B.; Civalek, Ö., Longitudinal vibration analysis for microbars based on strain gradient elasticity theory, Journal of Vibration and Control, 20, 606-616 (2014)
[7] Apuzzo, A.; Barretta, R.; Faghidian, S. A.; Lucaino, R.; de Sciarra, F. M., Free vibrations of elastic beams by modified nonlocal strain gradient theory, International Journal of Engineering Science, 133, 99-108 (2018) · Zbl 1423.74382
[8] Aydogdu, M., Axial vibration of the nanorods with the nonlocal continuum rod model, Physica E: Low-dimensional Systems and Nanostructures, 41, 861-864 (2009)
[9] Aydogdu, M., Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics, International Journal of Engineering Science, 56, 17-28 (2012)
[10] Barretta, R.; Faghidian, S. A.; de Sciarra, F. M., Stress-driven nonlocal integral elasticity for axisymmetric nano-plates, International Journal of Engineering Science, 136, 38-52 (2019) · Zbl 1425.74055
[11] Barretta, R.; Feo, L.; Luciano, R.; de Sciarra, F. M., Application of an enhanced version of the Eringen differential model to nanotechnology, Composites Part B: Engineering, 96, 274-280 (2016)
[12] Challamel, N.; Wang, C. M., The small length scale effect for a non-local cantilever beam: A paradox solved, Nanotechnology, 19, Article 345703 pp. (2008)
[13] Challamel, N.; Zhang, Z.; Wang, C. M.; Reddy, J. N.; Wang, Q.; Michelitsch, T., On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: Correction from a discrete-based approach, Archive of Applied Mechanics, 84, 1275-1292 (2014) · Zbl 1341.74094
[14] Civalek, Ö.; Demir, C., A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method, Applied Mathematics and Computation, 289, 335-352 (2016) · Zbl 1410.74033
[15] Daneshmehr, A.; Rajabpoor, A.; Hadi, A., Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, 95, 23-35 (2015) · Zbl 1423.74123
[16] Demir, Ç.; Civalek, Ö., Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models, Applied Mathematical Modeling, 37, 9355-9367 (2013)
[17] El-Borgi, S.; Rajendran, P.; Friswell, M. I.; Trabelssi, M.; Reddy, J. N., Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory, Composite Structures, 186, 274-292 (2018)
[18] Eltaher, M. A.; Alshorbagy, A. E.; Mahmoud, F. F., Vibration analysis of Euler-Bernoulli nanobeams by using finite element method, Applied Mathematical Modeling, 37, 4787-4797 (2013)
[19] Eringen, A. C., On nonlocal fluid mechanics, International Journal of Engineering Science, 10, 561-575 (1972) · Zbl 0241.76009
[20] Eringen, A. C., Edge dislocation in nonlocal elasticity, International Journal of Engineering Science, 15, 177-183 (1977) · Zbl 0357.73079
[21] Eringen, A. C., Screw dislocation in non-local elasticity, Journal of Physics D: Applied Physics, 10, 5, 671 (1977)
[22] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 4703-4710 (1983)
[23] Eringen, A. C., Plane waves in nonlocal micropolar elasticity, International Journal of Engineering Science, 22, 1113-1121 (1984) · Zbl 0564.73029
[24] Eringen, A. C.; Edelen, D. G.B., On nonlocal elasticity, International Journal of Engineering Science, 10, 233-248 (1972) · Zbl 0247.73005
[25] Faleh, N. M.; Ahmed, R. A.; Fenjan, R. M., On vibrations of porous FG nanoshells, International Journal of Engineering Science, 133, 1-14 (2018) · Zbl 1423.74388
[26] Farokhi, H.; Ghayesh, M. H., Nonlinear mechanical behaviour of microshells, International Journal of Engineering Science, 127, 127-144 (2018) · Zbl 1423.74572
[27] Fernández-Sáez, J.; Zaera, R., Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory, International Journal of Engineering Science, 119, 232-248 (2017) · Zbl 1423.74476
[28] Fernández-Sáez, J.; Zaera, R.; Loya, J. A.; Reddy, J. N., Bending of Euler-Bernoulli beams using Eringen’s integral formulation: A paradox resolved, International Journal of Engineering Science, 99, 107-116 (2016) · Zbl 1423.74477
[29] Fleck, N. A.; Hutchinson, J. W., A phenomenological theory for strain gradient effects in plasticity, Journal of Mechanics and Physics of Solids, 41, 1825-1857 (1993) · Zbl 0791.73029
[30] Fleck, N. A.; Hutchinson, J. W., A reformulation of strain gradient plasticity, Journal of Mechanics and Physics of Solids, 49, 2245-2271 (2001) · Zbl 1033.74006
[31] Frenzel, T.; Findeisen, C.; Kadic, M.; Gumbsch, P.; Wegener, M., Tailored buckling microlattices as reusable light‐weight shock absorbers, Advanced Materials, 28, 5865-5870 (2016)
[32] Ghayesh, M. H.; Farokhi, H., Nonlinear mechanics of doubly curved shallow microshells, International Journal of Engineering Science, 119, 288-304 (2017) · Zbl 1423.74131
[33] Guven, U., Love-Bishop rod solution based on strain gradient elasticity theory, Comptes Rendus Mécanique, 342, 8-16 (2014)
[34] Hadjo, L. E.; Eringen, A. C., Application of nonlocal theory to electromagnetic dispersion, International Journal of Engineering Science, 17, 785-791 (1979)
[35] Hemmatnezhad, M.; Ansari, R., Finite element formulation for the free vibration analysis of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory, Journal of Theoretical and Applied Physics, 7, 6 (2013)
[36] Kahrobaiyan, M. H.; Asghari, M.; Ahmadian, M. T., Longitudinal behavior of strain gradient bars, International Journal of Engineering Science, 66-67, 44-59 (2013)
[37] Kahrobaiyan, M. H.; Tajalli, S. A.; Movahhedy, M. R.; Akbari, J.; Ahmadian, M. T., Torsion of strain gradient bars, International Journal of Engineering Science, 49, 856-866 (2011) · Zbl 1231.74025
[38] Ke, L.-L.; Liu, C.; Wang, Y.-S., Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions, Physica E: Low-dimensional Systems and Nanostructures, 66, 93-106 (2015)
[39] Khaniki, H. B., On vibrations of FG nanobeams, International Journal of Engineering Science, 135, 23-36 (2018) · Zbl 1423.74397
[40] Khodabakhshi, P.; Reddy, J. N., A unified integro-differential nonlocal model, International Journal of Engineering Science, 95, 60-75 (2015) · Zbl 1423.74133
[41] Koiter, R. D., Couple stresses in the theory of elasticity, I & II. Philosophical Transactions of the Royal Society of London B, 67, 17-44 (1964) · Zbl 0124.17405
[42] Kong, S.; Zhou, S.; Nie, Z.; Wang, K., The size-dependent natural frequency of Bernoulli-Euler micro-beams, International Journal of Engineering Science, 46, 427-437 (2008) · Zbl 1213.74189
[43] Lam, D. C.C.; Yang, F.; Chong, A. C.M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, Journal of Mechanics and Physics of Solids, 51, 1477-1508 (2003) · Zbl 1077.74517
[44] Li, L.; Hu, Y., Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, International Journal of Engineering Science, 97, 84-94 (2015) · Zbl 1423.74495
[45] Lim, C.; Zhang, G.; Reddy, J., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, 78, 298-313 (2015) · Zbl 1349.74016
[46] Liu, H.; Liu, H.; Yang, J., Vibration of fg magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation, Composite Part B: Engineering, 155, 244-256 (2018)
[47] Lu, L.; Guo, X.; Zhao, J., Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, International Journal of Engineering Science, 116, 12-24 (2017) · Zbl 1423.74499
[48] Lu, L.; Guo, X.; Zhao, J., On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy, International Journal of Engineering Science, 124, 24-40 (2018) · Zbl 1423.74548
[49] Ma, H. M.; Gao, X.-L.; Reddy, J. N., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 56, 3379-3391 (2008) · Zbl 1171.74367
[50] Ma, L. M.; Ke, L. L.; Reddy, J. N.; Yang, J.; Kitipornchai, S.; Wang, Y. S., Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain gradient theory, Composite Structures, 199, 10-23 (2018)
[51] Mindlin, R. D.; Tiersten, H. F., Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, 415-448 (1962) · Zbl 0112.38906
[52] Mohamad-Abadi, M.; Daneshmehr, A. R., Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions, International Journal of Engineering Science, 74, 1-14 (2014) · Zbl 1423.74347
[53] Numanoğlu, H. M.; Akgöz, B.; Civalek, Ö., On dynamic analysis of nanorods, International Journal of Engineering Science, 130, 33-50 (2018)
[54] Parthasarathy, J.; Starly, B.; Raman, S., A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications, Journal of Manufacturing Processes, 13, 160-170 (2011)
[55] Peddieson, J.; Buchanan, G. R.; McNitt, R. P., Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science, 41, 305-312 (2003)
[56] Piazza, G.; Stephanou, P. J.; Pisano, A. P., Piezoelectric aluminum nitride vibrating contour-mode Mems resonators, Journal of Microelectromechanical Systems, 15, 1406-1418 (2006)
[57] Pradhan, S. C.; Mandal, U., Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect, Physica E-Low-Dimensional Systems & Nanostructures, 53, 223-232 (2013)
[58] Que, L.; Park, J.-S.; Gianchandani, Y. B., Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices, Journal of Microelectromechanical Systems, 10, 247-254 (2001)
[59] Reddy, J. N., Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, 45, 288-307 (2007) · Zbl 1213.74194
[60] Reddy, J. N., Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, International Journal of Engineering Science, 48, 1507-1518 (2010) · Zbl 1231.74048
[61] Reddy, J. N.; Pang, S. D., Nonlocal continuum theories of beams for the analysis of carbon nanotubes, Journal of Applied Physics, 103, Article 023511 pp. (2008)
[62] Romano, G.; Barretta, R., Nonlocal elasticity in nanobeams: The stress-driven integral model, International Journal of Engineering Science, 115, 14-27 (2017) · Zbl 1423.74512
[63] Sahmani, S.; Bahrami, M.; Aghdam, M. M., Surface stress effects on the nonlinear postbuckling characteristics of geometrically imperfect cylindrical nanoshells subjected to axial compression, International Journal of Engineering Science, 99, 92-106 (2016) · Zbl 1423.74021
[64] Shafiei, N.; Kazemi, M.; Safi, M.; Ghadiri, M., Nonlinear vibration of axially functionally graded non-uniform nanobeams, International Journal of Engineering Science, 106, 77-94 (2016)
[65] Shahverdi, H.; Barati, M. R., Vibration analysis of porous functionally graded nanoplates, International Journal of Engineering Science, 120, 82-99 (2017) · Zbl 1423.74408
[66] Srividhya, S.; Raghu, P.; Rajagopal, A.; Reddy, J. N., Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory, International Journal of Engineering Science, 125, 1-22 (2018) · Zbl 1423.74554
[67] Syms, R. R.A.; Liu, D.; Ahmad, M. M., Nanostructured 2D cellular materials in silicon by sidewall transfer lithography Nems, Journal of Micromechanics and Microengineering, 27, 7 (2017)
[68] Taati, E., Analytical solutions for the size dependent buckling and postbuckling behavior of functionally graded micro-plates, International Journal of Engineering Science, 100, 45-60 (2016) · Zbl 1423.74354
[69] Thai, H. T., A nonlocal beam theory for bending, buckling, and vibration of nanobeams, International Journal of Engineering Science, 52, 56-64 (2012) · Zbl 1423.74356
[70] Toupin, R. A., Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, 11, 385-414 (1962) · Zbl 0112.16805
[71] Tuna, M.; Kirca, M., Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams, International Journal of Engineering Science, 105, 80-92 (2016) · Zbl 1423.74518
[72] Tuna, M.; Kirca, M., Exact solution of Eringen’s nonlocal integral model for vibration and buckling of Euler-Bernoulli beam, International Journal of Engineering Science, 107, 54-67 (2016) · Zbl 1423.74519
[73] Wang, Y.-G.; Lin, W.-H.; Liu, N., Large amplitude free vibration of size-dependent circular microplates based on the modified couple stress theory, International Journal of Mechanical Sciences, 71, 51-57 (2013)
[74] Wang, Y.-L.; Li, F.-M., Static bending behaviors of nanoplate embedded in elastic matrix with small scale effects, Mechanics Research Communications, 41, 44-48 (2012)
[75] Xia, X.; Di Leo, C.; Gu, X. W.; Greer, J. R., In situ lithiation-delithiation of mechanically robust cu-si core-shell nanolattices in a scanning electron microscope, ACS Energy Letters, 1, 492-499 (2016)
[76] Xu, X.-J.; Zheng, M.-L.; Wang, X.-C., On vibrations of nonlocal rods: Boundary conditions, exact solutions and their asymptotics, International Journal of Engineering Science, 119, 217-2317 (2015) · Zbl 1423.74521
[77] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39, 2731-2743 (2002) · Zbl 1037.74006
[78] Zenkour, A. M.; Sobhy, M., Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium, Physica E: Low-dimensional Systems and Nanostructures, 53, 251-259 (2013)
[79] Zhu, X.; Li, L., On longitudinal dynamics of nanorods, International Journal of Engineering Science, 120, 129-145 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.