×

Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations. (English) Zbl 1244.65155

Summary: Periodic travelling waves (wavetrains) are an important solution type for many partial differential equations. In this paper I review the use of numerical continuation for studying these solutions. I discuss the calculation of the form and stability of a given periodic travelling wave, and the calculation of boundaries in a two-dimensional parameter plane for wave existence and stability. I also describe the automated implementation of these numerical continuation procedures via the software package wavetrain (http://www.ma.hw.ac.uk/wavetrain). I conclude by discussing ongoing work on numerical continuation methods for determining the absolute stability of periodic travelling waves.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35G20 Nonlinear higher-order PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Kopell, N.; Howard, L. N., Plane wave solutions to reaction-diffusion equations, Stud. Appl. Math., 52, 291-328 (1973) · Zbl 0305.35081
[2] Aranson, I. S.; Kramer, L., The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys., 74, 99-143 (2002) · Zbl 1205.35299
[3] DeVille, R. E.L.; Vanden-Eijnden, E., Wavetrain response of an excitable medium to local stochastic forcing, Nonlinearity, 20, 51-74 (2007) · Zbl 1132.60049
[4] Sherratt, J. A.; Lord, G. J., Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments, Theor. Popul. Biol., 71, 1-11 (2007) · Zbl 1118.92064
[5] Steinberg, V.; Fineberg, J.; Moses, E.; Rehberg, I., Pattern selection and transition to turbulence in propagating waves, Physica D, 37, 359-383 (1989)
[6] van Hecke, M., Coherent and incoherent structures in systems described by the 1D CGLE: experiments and identification, Physica D, 174, 134-151 (2003) · Zbl 1076.76525
[7] van Saarloos, W., Front propagation into unstable states, Phys. Rep., 386, 29-222 (2003) · Zbl 1042.74029
[8] Proctor, M. R.E.; Tobias, S. M.; Knobloch, E., Noise-sustained structures due to convective instability in finite domains, Physica D, 145, 191-206 (2000) · Zbl 0963.35164
[9] Kopell, N.; Howard, L. N., Horizontal bands in Belousov reaction, Science, 180, 1171-1173 (1973)
[10] Epstein, I. R.; Showalter, K., Nonlinear chemical dynamics: oscillations, patterns and chaos, J. Phys. Chem., 100, 13132-13147 (1996)
[11] Vanag, V. K.; Epstein, I. R., Design and control of patterns in reaction-diffusion systems, Chaos, 18 (2008), (Art. No. 026107)
[12] Bordyugov, G.; Fischer, N.; Engel, H.; Manz, N.; Steinbock, O., Anomalous dispersion in the Belousov-Zhabotinsky reaction: experiments and modeling, Physica D, 239, 766-775 (2010) · Zbl 1231.37048
[13] Ranta, E.; Kaitala, V., Travelling waves in vole population dynamics, Nature, 390, 456 (1997)
[14] Bierman, S. M.; Fairbairn, J. P.; Petty, S. J.; Elston, D. A.; Tidhar, D.; Lambin, X., Changes over time in the spatiotemporal dynamics of cyclic populations of field voles (Microtus agrestis L.), Am. Nat., 167, 583-590 (2006)
[15] Sherratt, J. A.; Smith, M. J., Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models, J. R. Soc. Interf., 5, 483-505 (2008)
[16] Valentin, C.; d’Herbès, J. M.; Poesen, J., Soil and water components of banded vegetation patterns, Catena, 37, 1-24 (1999)
[17] Rietkerk, M.; Dekker, S. C.; de Ruiter, P. C.; van de Koppel, J., Self-organized patchiness and catastrophic shifts in ecosystems, Science, 305, 1926-1929 (2004)
[18] Rademacher, J. D.M.; Sandstede, B.; Scheel, A., Computing absolute and essential spectra using continuation, Physica D, 229, 166-183 (2007) · Zbl 1119.65114
[19] Klausmeier, C. A., Regular and irregular patterns in semiarid vegetation, Science, 284, 1826-1828 (1999)
[20] <http://indy.cs.concordia.ca/auto>; <http://indy.cs.concordia.ca/auto>
[21] Doedel, E. J., Auto, a program for the automatic bifurcation analysis of autonomous systems, Cong. Numer., 30, 265-384 (1981) · Zbl 0511.65064
[22] Doedel, E. J.; Keller, H. B.; Kernévez, J. P., Numerical analysis and control of bifurcation problems: (I) Bifurcation in finite dimensions, Int. J. Bifurcat. Chaos, 1, 493-520 (1991) · Zbl 0876.65032
[23] Doedel, E. J.; Govaerts, W.; Kuznetsov, Y. A.; Dhooge, A., Numerical continuation of branch points of equilibria and periodic orbits, (Doedel, E. J.; Domokos, G.; Kevrekidis, I. G., Modelling and Computations in Dynamical Systems (2006), World Scientific: World Scientific Singapore), 145-164 · Zbl 1081.37054
[24] Callaway, R. M., Positive interactions among plants, Bot. Rev., 61, 306-349 (1995)
[25] Rietkerk, M.; Ketner, P.; Burger, J.; Hoorens, B.; Olff, H., Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa, Plant Ecol., 148, 207-224 (2000)
[26] Ursino, N., The influence of soil properties on the formation of unstable vegetation patterns on hillsides of semiarid catchments, Adv. Water Resour., 28, 956-963 (2005)
[27] Sherratt, J. A., An analysis of vegetation stripe formation in semi-arid landscapes, J. Math. Biol., 51, 183-197 (2005) · Zbl 1068.92047
[28] Sherratt, J. A., Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments I, Nonlinearity, 23, 2657-2675 (2010) · Zbl 1197.92047
[29] Sherratt, J. A., Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments II: Patterns with the largest possible propagation speeds, Proc. R. Soc. Lond. A, 467, 3272-3294 (2011) · Zbl 1239.92085
[30] J.A. Sherratt, Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments III: the transition between homoclinic solutions, submitted for publication.; J.A. Sherratt, Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments III: the transition between homoclinic solutions, submitted for publication. · Zbl 1261.35144
[31] Lefever, R.; Lejeune, O., On the origin of tiger bush, Bull. Math. Biol., 59, 263-294 (1997) · Zbl 0903.92031
[32] HilleRisLambers, R.; Rietkerk, M.; van de Bosch, F.; Prins, H. H.T.; de Kroon, H., Vegetation pattern formation in semi-arid grazing systems, Ecology, 82, 50-61 (2001)
[33] von Hardenberg, J.; Meron, E.; Shachak, M.; Zarmi, Y., Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), (Art. No. 198101)
[34] Rietkerk, M.; Boerlijst, M. C.; van Langevelde, F.; HilleRisLambers, R.; van de Koppel, J.; Prins, H. H.T.; de Roos, A., Self-organisation of vegetation in arid ecosystems, Am. Nat., 160, 524-530 (2002)
[35] Gilad, E.; von Hardenberg, J.; Provenzale, A.; Shachak, M.; Meron, E., A mathematical model of plants as ecosystem engineers, J. Theor. Biol., 244, 680-691 (2007) · Zbl 1450.92079
[36] Borgogno, F.; D’Odorico, P.; Laio, F.; Ridolfi, L., Mathematical models of vegetation pattern formation in ecohydrology, Rev. Geophys., 47 (2009), (Art. No. RG1005)
[37] <http://www.ma.hw.ac.uk/wavetrain>; <http://www.ma.hw.ac.uk/wavetrain>
[38] <http://www.ma.hw.ac.uk/∼;jas/supplements/numericalcontinuation>; <http://www.ma.hw.ac.uk/∼;jas/supplements/numericalcontinuation>
[39] Smith, M. J.; Sherratt, J. A., The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction-diffusion systems, Physica D, 236, 90-103 (2007) · Zbl 1361.34040
[40] Wang, R. H.; Liu, Q. X.; Sun, G. Q.; Jin, Z.; van de Koppel, J., Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds, J. R. Soc. Interf., 6, 705-718 (2009)
[41] Champneys, A. R.; Kuznetsov, Y. A., Numerical detection and continuation of codimension-two homoclinic bifurcations, Int. J. Bifurcat. Chaos, 4, 785-822 (1994) · Zbl 0873.34030
[42] Champneys, A. R.; Kuznetsov, Y. A.; Sandstede, B., A numerical toolbox for homoclinic bifurcation analysis, Int. J. Bifurcat. Chaos, 6, 867-887 (1996) · Zbl 0877.65058
[43] Deconinck, B.; Kutz, J. N., Computing spectra of linear operators using the Floquet-Fourier-Hill method, J. Comput. Phys., 219, 296-321 (2006) · Zbl 1105.65119
[44] Gardner, R. A., On the structure of the spectra of periodic travelling waves, J. Math. Pure Appl., 72, 415-439 (1993) · Zbl 0831.35077
[45] Sandstede, B., Stability of travelling waves, (Fiedler, B., Handbook of Dynamical Systems II (2002), North-Holland: North-Holland Amsterdam), 983-1055 · Zbl 1056.35022
[46] <http://www.caam.rice.edu/software/ARPACK>; <http://www.caam.rice.edu/software/ARPACK>
[47] Lehoucq, R. B.; Sorensen, D. C.; Yang, C., Arpack Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (1998), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 0901.65021
[48] <http://www.netlib.org/lapack>; <http://www.netlib.org/lapack>
[49] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., Lapack Users’ Guide (1999), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 0934.65030
[50] Bordiougov, G.; Engel, H., From trigger to phase waves and back again, Physica D, 215, 25-37 (2006) · Zbl 1094.35061
[51] Deconinck, B.; Kiyak, F.; Carter, J. D.; Kutz, J. N., SpectrUW: a laboratory for the numerical exploration of spectra of linear operators, Math. Comput. Simulat., 74, 370-379 (2007) · Zbl 1113.65058
[52] <http://www.amath.washington.edu/hill/spectruw.html>; <http://www.amath.washington.edu/hill/spectruw.html>
[53] Rademacher, J. D.M.; Scheel, A., Instabilities of wave trains and Turing patterns in large domains, Int. J. Bifurcat. Chaos, 17, 2679-2691 (2007) · Zbl 1141.37359
[54] Atkinson, F. V., Discrete and Continuous Boundary Problems (1964), Academic Press: Academic Press New York · Zbl 0117.05806
[55] Kreiss, H. O., Difference approximation for boundary and eigenvalue problems for ordinary differential equations, Math. Comput., 26, 605-624 (1972) · Zbl 0264.65044
[56] de Boor, C.; Swartz, B., Collocation approximation to eigenvalues of an ordinary differential equation: the principle of the thing, Math. Comput., 35, 679-694 (1980) · Zbl 0444.65053
[57] Chatelin, F., The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators, SIAM Rev., 23, 495-522 (1981) · Zbl 0472.65048
[58] J.A. Sherratt, Numerical continuation of boundaries in parameter space between stable and unstable periodic travelling wave (wavetrain) solutions of partial differential equations, submitted for publication.; J.A. Sherratt, Numerical continuation of boundaries in parameter space between stable and unstable periodic travelling wave (wavetrain) solutions of partial differential equations, submitted for publication. · Zbl 1271.65132
[59] Sherratt, J. A., Unstable wavetrains and chaotic wakes in reaction-diffusion systems of \(λ-ω\) type, Physica D, 82, 165-179 (1995) · Zbl 0900.35194
[60] Smith, M. J.; Rademacher, J. D.M.; Sherratt, J. A., Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type, SIAM J. Appl. Dyn. Syst., 8, 1136-1159 (2009) · Zbl 1183.35032
[61] Nozaki, K.; Bekki, N., Pattern selection and spatiotemporal transition to chaos in the Ginzburg-Landau equation, Phys. Rev. Lett., 51, 2171-2174 (1983)
[62] Petrovskii, S. V.; Malchow, H., Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics, Theor. Popul. Biol., 59, 157-174 (2001) · Zbl 1035.92046
[63] Garvie, M. R., Finite difference schemes for reaction-diffusion equations modeling predator-prey interactions in matlab, Bull. Math. Biol., 69, 931-956 (2007) · Zbl 1298.92081
[64] Merchant, S. M.; Nagata, W., Wave train selection behind invasion fronts in reaction-diffusion predator-prey models, Physica D, 239, 1670-1680 (2010) · Zbl 1204.37087
[65] Brevdo, L., Convectively unstable wave packets in the Blasius boundary layer, Z. Angew. Math. Mech., 75, 423-436 (1995) · Zbl 0834.76024
[66] Brevdo, L.; Laure, P.; Dias, F.; Bridges, T. J., Linear pulse structure and signalling in a film flow on an inclined plane, J. Fluid Mech., 396, 37-71 (1999) · Zbl 0982.76037
[67] Sandstede, B.; Scheel, A., Absolute versus convective instability of spiral waves, Phys. Rev. E, 62, 7708-7714 (2000)
[68] Sandstede, B.; Scheel, A., Absolute and convective instabilities of waves on unbounded and large bounded domains, Physica D, 145, 233-277 (2000) · Zbl 0963.34072
[69] Sherratt, J. A.; Smith, M. J.; Rademacher, J. D.M., Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion, Proc. Natl. Acad. Sci. USA, 106, 10890-10895 (2009) · Zbl 1203.37062
[70] Smith, M. J.; Sherratt, J. A., Propagating fronts in the complex Ginzburg-Landau equation generate fixed-width bands of plane waves, Phys. Rev. E, 80 (2009), (Art. No. 046209)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.