×

A trio of heteroclinic bifurcations arising from a model of spatially-extended Rock-Paper-Scissors. (English) Zbl 1412.37055

The authors consider a trio of heteroclinic bifurcations arising from a model of spatially-extended Rock-Paper-Scissors. One of the simplest examples of a robust heteroclinic cycle involves three saddle equilibria: each one is unstable to the next in turn, and connections from one to the next occur within invariant subspaces. Such a situation can be described by a third-order ordinary differential equation (ODE), and typical trajectories approach each equilibrium point in turn, spending progressively longer to cycle around the three points but never stopping. This cycle has been invoked as a model of cyclic competition between populations adopting three strategies, characterised as Rock, Paper and Scissors. When spatial distribution and mobility of the populations is taken into account, waves of Rock can invade regions of Scissors, only to be invaded by Paper in turn. The dynamics is described by a set of partial differential equations (PDEs) that has travelling wave (in one dimension) and spiral (in two dimensions) solutions. The authors explore how the robust heteroclinic cycle in the ODE manifests itself in the PDEs. Taking the wavespeed as a parameter, and moving into a travelling frame, the PDEs reduce to a sixth-order set of ODEs, in which travelling waves are created in a Hopf bifurcation and are destroyed in three different heteroclinic bifurcations, depending on parameters, as the travelling wave approaches the heteroclinic cycle. The three different heteroclinic bifurcations are explored, none of which has been observed in the context of robust heteroclinic cycles previously. These results are an important step towards a full understanding of the spiral patterns found in two dimensions, with possible application to travelling waves and spirals in other population dynamics models.

MSC:

37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
37C29 Homoclinic and heteroclinic orbits for dynamical systems
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
35C07 Traveling wave solutions
91A22 Evolutionary games
92D25 Population dynamics (general)

Software:

AUTO; HomCont

References:

[1] May R M and Leonard W J 1975 Nonlinear aspects of competition between 3 species SIAM J. Appl. Math.29 243-53 · Zbl 0314.92008 · doi:10.1137/0129022
[2] Szolnoki A, Mobilia M, Jiang L, Szczesny B, Rucklidge A M and Perc M 2014 Cyclic dominance in evolutionary games: a review J. R. Soc. Interface11 20140735 · doi:10.1098/rsif.2014.0735
[3] Kerr B, Riley M A, Feldman M W and Bohannan B J M 2002 Local dispersal promotes biodiversity in a real-life game of Rock-Paper-Scissors Nature418 171-4 · doi:10.1038/nature00823
[4] Sinervo B and Lively C M 1996 The Rock-Paper-Scissors game and the evolution of alternative male strategies Nature380 240-3 · doi:10.1038/380240a0
[5] Busse F H and Heikes K E 1980 Convection in a rotating layer: a simple case of turbulence Science208 173-5 · doi:10.1126/science.208.4440.173
[6] Guckenheimer J and Holmes P 1988 Structurally stable heteroclinic cycles Math. Proc. Camb. Phil. Soc.103 189-92 · Zbl 0645.58022 · doi:10.1017/S0305004100064732
[7] Kimura M and Ohta T 1969 The average number of generations until fixation of a mutant gene in a finite population Genetics61 763-71
[8] Frey E 2010 Evolutionary game theory: theoretical concepts and applications to microbial communities Physica A 389 4265-98 · Zbl 1225.91010 · doi:10.1016/j.physa.2010.02.047
[9] Szczesny B, Mobilia M and Rucklidge A M 2014 Characterization of spiraling patterns in spatial Rock-Paper-Scissors games Phys. Rev. E 90 032704 · doi:10.1103/PhysRevE.90.032704
[10] Hofbauer J and Sigmund K 1998 Evolutionary Games and Population Dynamics (Cambridge: Cambridge University Press) · Zbl 0914.90287 · doi:10.1017/CBO9781139173179
[11] Scheel A and Chossat P 1992 Bifurcation d’orbites périodiques à partir d’un cycle homocline symétrique C. R. Acad. Sci. Paris I 314 49-54 · Zbl 0748.34024
[12] Postlethwaite C M 2010 A new mechanism for stability loss from a heteroclinic cycle Dyn. Syst. Int. J.25 305-22 · Zbl 1204.37066 · doi:10.1080/14689367.2010.495708
[13] Reichenbach T, Mobilia M and Frey E 2008 Self-organization of mobile populations in cyclic competition J. Theor. Biol.254 368-83 · Zbl 1400.92443 · doi:10.1016/j.jtbi.2008.05.014
[14] Postlethwaite C M and Rucklidge A M 2017 Spirals and heteroclinic cycles in a spatially extended Rock-Paper-Scissors model of cyclic dominance Europhys. Lett.117 48006 · doi:10.1209/0295-5075/117/48006
[15] Krupa M and Melbourne I 2004 Asymptotic stability of heteroclinic cycles in systems with symmetry. II Proc. R. Soc. Edinburgh A 134 1177-97 · Zbl 1073.37025 · doi:10.1017/S0308210500003693
[16] Field M 1996 Lectures on Bifurcations, Dynamics and Symmetry(Pitman Research Notes in Mathematics vol 356) (London: Longmans Green) · Zbl 0857.58013
[17] Krupa M 1997 Robust heteroclinic cycles J. Nonlinear Sci.7 129-76 · Zbl 0879.58054 · doi:10.1007/BF02677976
[18] Krupa M and Melbourne I 1995 Asymptotic stability of heteroclinic cycles in systems with symmetry Ergod. Theor. Dynam. Syst.15 121-47 · Zbl 0818.58025 · doi:10.1017/S0143385700008270
[19] Field M and Swift J W 1991 Stationary bifurcation to limit cycles and heteroclinic cycles Nonlinearity4 1001-43 · Zbl 0744.58056 · doi:10.1088/0951-7715/4/4/001
[20] Chossat P, Krupa M, Melbourne I and Scheel A 1997 Transverse bifurcations of homoclinic cycles Physica D 100 85-100 · Zbl 0892.34044 · doi:10.1016/S0167-2789(96)00186-8
[21] Jones C A and Proctor M R E 1987 Strong spatial resonance and traveling waves in Benard convection Phys. Lett. A 121 224-8 · doi:10.1016/0375-9601(87)90008-9
[22] Melbourne I, Chossat P and Golubitsky M 1989 Heteroclinic cycles involving periodic-solutions in mode interactions with O(2) symmetry Proc. R. Soc. Edinburgh A 113 315-45 · Zbl 0737.58042 · doi:10.1017/S0308210500024173
[23] Postlethwaite C M and Dawes J H P 2006 A codimension-two resonant bifurcation from a heteroclinic cycle with complex eigenvalues Dyn. Syst. Int. J.21 313-36 · Zbl 1132.34033 · doi:10.1080/14689360600552928
[24] Kirk V and Silber M 1994 A competition between heteroclinic cycles Nonlinearity7 1605-21 · Zbl 0815.34033 · doi:10.1088/0951-7715/7/6/005
[25] Ashwin P and Field M 1999 Heteroclinic networks in coupled cell systems Arch. Ration. Mech. Anal.148 107-43 · Zbl 0947.37012 · doi:10.1007/s002050050158
[26] Driesse R and Homburg A J 2009 Essentially asymptotically stable homoclinic networks Dyn. Syst. Int. J.24 459-71 · Zbl 1185.37133 · doi:10.1080/14689360903039664
[27] Melbourne I 1991 An example of a non-asymptotically stable attractor Nonlinearity4 835-44 · Zbl 0737.58043 · doi:10.1088/0951-7715/4/3/010
[28] Postlethwaite C M and Dawes J H P 2010 Resonance bifurcations from robust homoclinic cycles Nonlinearity23 621-42 · Zbl 1194.34086 · doi:10.1088/0951-7715/23/3/011
[29] Podvigina O 2012 Stability and bifurcations of heteroclinic cycles of type Z Nonlinearity25 1887-917 · Zbl 1259.37015 · doi:10.1088/0951-7715/25/6/1887
[30] Podvigina O 2013 Classification and stability of simple homoclinic cycles in R5 Nonlinearity26 1501-28 · Zbl 1278.34051 · doi:10.1088/0951-7715/26/5/1501
[31] Podvigina O and Ashwin P 2011 On local attraction properties and a stability index for heteroclinic connections Nonlinearity24 887-929 · Zbl 1219.37021 · doi:10.1088/0951-7715/24/3/009
[32] Podvigina O and Chossat P 2017 Asymptotic stability of pseudo-simple heteroclinic cycles in R4 J. Nonlinear Sci.27 343-75 · Zbl 1386.34083 · doi:10.1007/s00332-016-9335-4
[33] Castro S B S D and Lohse A 2014 Stability in simple heteroclinic networks in R4 Dyn. Syst.29 451-81 · Zbl 1404.34053 · doi:10.1080/14689367.2014.940853
[34] Lohse A 2015 Stability of heteroclinic cycles in transverse bifurcations Physica D 310 95-103 · Zbl 1364.37055 · doi:10.1016/j.physd.2015.08.005
[35] Oldeman B E, Krauskopf B and Champneys A R 2000 Death of period-doublings: locating the homoclinic-doubling cascade Physica D 146 100-20 · Zbl 1011.34036 · doi:10.1016/S0167-2789(00)00133-0
[36] Oldeman B E, Krauskopf B and Champneys A R 2001 Numerical unfoldings of codimension-three resonant homoclinic flip bifurcations Nonlinearity14 597-621 · Zbl 0990.37039 · doi:10.1088/0951-7715/14/3/309
[37] Chow S-N, Deng B and Fiedler B 1990 Homoclinic bifurcation at resonant eigenvalues J. Dyn. Differ. Equ.2 177-244 · Zbl 0703.34050 · doi:10.1007/BF01057418
[38] Kokubu H, Komuro M and Oka H 1996 Multiple homoclinic bifurcations from orbit-flip I: successive homoclinic doublings Int. J. Bifurcation Chaos06 833-50 · Zbl 0884.34047 · doi:10.1142/S0218127496000461
[39] Homburg A J and Krauskopf B 2000 Resonant homoclinic flip bifurcations J. Dyn. Differ. Equ.12 807-50 · Zbl 0990.37038 · doi:10.1023/A:1009046621861
[40] Belyakov L A 1984 Bifurcation of systems with homoclinic curve of a saddle-focus with saddle quantity zero Mat. Zametki36 681-9 · Zbl 0561.34019
[41] Devaney R L 1976 Homoclinic orbits in hamiltonian systems J. Differ. Equ.21 431-8 · Zbl 0343.58005 · doi:10.1016/0022-0396(76)90130-3
[42] Doedel E J, Paffenroth R C, Champneys A R, Fairgrieve T F, Kuznetsov Y A, Sandstede B and Wang X 2001 AUTO 2000: continuation and bifurcation software for ordinary differential equations (with HomCont) Technical Report
[43] Kirk V, Postlethwaite C and Rucklidge A M 2012 Resonance bifurcations of robust heteroclinic networks SIAM J. Appl. Dyn. Syst.11 1360-401 · Zbl 1263.37039 · doi:10.1137/120864684
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.