×

Heterogeneity in behaviour and movement can influence the stability of predator-prey periodic travelling waves. (English) Zbl 1506.92068

In order to understand the effects of heterogeneity on predator-prey, authors study periodic traveling wave solutions of a one-dimensional infinite landscape Rosenzweig-MacArthur reaction-diffusion model with alternating patch types. Applying the method of homogenisation, they show how heterogeneity can affect the stability of periodic traveling waves solutions. Their results illustrate how the effects of heterogeneity can be understood and interpreted using Turchin’s concept of residence index.

MSC:

92D25 Population dynamics (general)
35C07 Traveling wave solutions
35K57 Reaction-diffusion equations

References:

[1] Andrade R, Cobbold CA (2022) Computing omega1—heterogeneity in behaviour and movement can influence the stability of predator-prey periodic travelling waves. Available at doi:10.5525/gla.researchdata.1341
[2] Barraquand, F.; Louca, S.; Abbott, KC; Cobbold, CA; Cordoleani, F.; DeAngelis, DL; Elderd, BD; Fox, JW; Greenwood, P.; Hilker, FM, Moving forward in circles: challenges and opportunities in modelling population cycles, Ecol Lett, 20, 8, 1074-1092 (2017)
[3] Bélisle, M.; Desrochers, A., Gap-crossing decisions by forest birds: an empirical basis for parameterizing spatially-explicit, individual-based models, Landsc Ecol, 17, 3, 219-231 (2002)
[4] Bennett, JJ; Sherratt, JA, Periodic traveling waves generated by invasion in cyclic predator-prey systems: the effect of unequal dispersal, SIAM J Appl Math, 77, 6, 2136-2155 (2017) · Zbl 1387.35089
[5] Bennett, JJ; Sherratt, JA, How do dispersal rates affect the transition from periodic to irregular spatio-temporal oscillations in invasive predator-prey systems?, Appl Math Lett, 94, 80-86 (2019) · Zbl 1411.92242
[6] Berthier, K.; Piry, S.; Cosson, J-F; Giraudoux, P.; Foltête, J-C; Defaut, R.; Truchetet, D.; Lambin, X., Dispersal, landscape and travelling waves in cyclic vole populations, Ecol Lett, 17, 1, 53-64 (2014)
[7] Cantrell RS, Cosner C (2004) Spatial ecology via reaction-diffusion equations. Wiley
[8] Cobbold, CA; Lutscher, F., Mean occupancy time: linking mechanistic movement models, population dynamics and landscape ecology to population persistence, J Math Biol, 68, 3, 549-579 (2014) · Zbl 1283.92070
[9] Cobbold, CA; Lustcher, F.; Yurk, B., Bridging the scale-gap: predicting large-scale population dynamics from small-scale variation in strongly heterogeneous landscapes, Methods Ecol Evol, 13, 4, 866-879 (2022)
[10] Fahrig, L., Effects of habitat fragmentation on biodiversity, Annu Rev Ecol Evol Syst, 34, 1, 487-515 (2003)
[11] Fitzgibbon, WE; Langlais, M.; Morgan, JJ, A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous spatial domain, SIAM J Math Anal, 33, 3, 570-588 (2001) · Zbl 1008.92031
[12] Garlick, MJ; Powell, JA; Hooten, MB; McFarlane, LR, Homogenization of large-scale movement models in ecology, Bull Math Biol, 73, 9, 2088-2108 (2011) · Zbl 1225.92055
[13] Gauduchon, T.; Strohm, S.; Tyson, R., The effect of habitat fragmentation on cyclic populations with edge behaviour, Math Model Nat Phenomena, 8, 6, 45-63 (2013) · Zbl 1285.92023
[14] Glendinning P (1994) Stability, instability and chaos: an introduction to the theory of nonlinear differential equations. Cambridge University Press · Zbl 0808.34001
[15] Guckenheimer J, Holmes P (2013) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol 42. Springer
[16] Holmes MH (2012) Introduction to perturbation methods, vol 20. Springer
[17] Hunter, JD, Matplotlib: a 2d graphics environment, Comput Sci Eng, 9, 3, 90-95 (2007)
[18] Johnson, DM; Bjørnstad, ON; Liebhold, AM, Landscape geometry and travelling waves in the larch budmoth, Ecol Lett, 7, 10, 967-974 (2004)
[19] Kaitala, V.; Ranta, E., Travelling wave dynamics and self-organization in a spatio-temporally structured population, Ecol Lett, 1, 3, 186-192 (1998)
[20] Kay, AL; Sherratt, JA, Spatial noise stabilizes periodic wave patterns in oscillatory systems on finite domains, SIAM J Appl Math, 61, 3, 1013-1041 (2000) · Zbl 1016.92002
[21] Kopell, N.; Howard, LN, Plane wave solutions to reaction-diffusion equations, Stud Appl Math, 52, 4, 291-328 (1973) · Zbl 0305.35081
[22] Kot M (2001) Elements of mathematical ecology. Cambridge University Press
[23] Krebs, CJ; Boonstra, R.; Boutin, S., Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America, J Anim Ecol, 87, 1, 87-100 (2018)
[24] Lambin, X.; Elston, DA; Petty, SJ; MacKinnon, JL, Spatial asynchrony and periodic travelling waves in cyclic populations of field voles, Proc R Soc Lond Ser B Biol Sci, 265, 1405, 1491-1496 (1998)
[25] Maciel, GA; Kraenkel, RA, How population loss through habitat boundaries determines the dynamics of a predator-prey system, Ecol Complex, 20, 33-42 (2014)
[26] Maciel, GA; Lutscher, F., How individual movement response to habitat edges affects population persistence and spatial spread, Am Nat, 182, 1, 42-52 (2013)
[27] Martin, J-L; Joron, M., Nest predation in forest birds: influence of predator type and predator’s habitat quality, Oikos, 102, 3, 641-653 (2003)
[28] Merchant, SM; Nagata, W., Wave train selection behind invasion fronts in reaction-diffusion predator-prey models, Physica D, 239, 17, 1670-1680 (2010) · Zbl 1204.37087
[29] Merchant, SM; Nagata, W., Selection and stability of wave trains behind predator invasions in a model with non-local prey competition, IMA J Appl Math, 80, 4, 1155-1177 (2015) · Zbl 1330.35475
[30] Moss, R.; Elston, D.; Watson, A., Spatial asynchrony and demographic traveling waves during red grouse population cycles, Ecology, 81, 4, 981-989 (2000)
[31] Murray J (2001) Mathematical biology II: spatial models and biomedical applications, vol 3. Springer-Verlag
[32] Ovaskainen, O.; Cornell, SJ, Biased movement at a boundary and conditional occupancy times for diffusion processes, J Appl Probab, 40, 3, 557-580 (2003) · Zbl 1078.60061
[33] Petrovskii, SV; Malchow, H., A minimal model of pattern formation in a prey-predator system, Math Comput Model, 29, 8, 49-63 (1999) · Zbl 0990.92040
[34] Petrovskii, S.; Petrovskaya, N.; Bearup, D., Multiscale approach to pest insect monitoring: random walks, pattern formation, synchronization, and networks, Phys Life Rev, 11, 3, 467-525 (2014)
[35] Rademacher, JD; Sandstede, B.; Scheel, A., Computing absolute and essential spectra using continuation, Physica D, 229, 2, 166-183 (2007) · Zbl 1119.65114
[36] Robertson, OJ; Radford, JQ, Gap-crossing decisions of forest birds in a fragmented landscape, Austral Ecol, 34, 4, 435-446 (2009)
[37] Rosenzweig, ML; MacArthur, RH, Graphical representation and stability conditions of predator-prey interactions, Am Nat, 97, 895, 209-223 (1963)
[38] Ryall, KL; Fahrig, L., Response of predators to loss and fragmentation of prey habitat: a review of theory, Ecology, 87, 5, 1086-1093 (2006)
[39] Schultz, CB, Dispersal behavior and its implications for reserve design in a rare Oregon butterfly, Conserv Biol, 12, 2, 284-292 (1998)
[40] Schultz, CB; Crone, EE, Edge-mediated dispersal behavior in a prairie butterfly, Ecology, 82, 7, 1879-1892 (2001)
[41] Sherratt, JA, Oscillatory and chaotic wakes behind moving boundaries in reaction-diffusion systems, Dyn Stab Syst, 11, 4, 303-324 (1996) · Zbl 0877.35058
[42] Sherratt, JA, Invading wave fronts and their oscillatory wakes are linked by a modulated travelling phase resetting wave, Physica D, 117, 1-4, 145-166 (1998) · Zbl 0940.35111
[43] Sherratt, JA, Periodic travelling waves in cyclic predator-prey systems, Ecol Lett, 4, 1, 30-37 (2001)
[44] Sherratt, JA, Periodic travelling wave selection by Dirichlet boundary conditions in oscillatory reaction-diffusion systems, SIAM J Appl Math, 63, 5, 1520-1538 (2003) · Zbl 1036.35093
[45] Sherratt, JA, A comparison of periodic travelling wave generation by robin and Dirichlet boundary conditions in oscillatory reaction-diffusion equations, IMA J Appl Math, 73, 5, 759-781 (2008) · Zbl 1184.35269
[46] Sherratt, JA, Numerical continuation of boundaries in parameter space between stable and unstable periodic travelling wave (wavetrain) solutions of partial differential equations, Adv Comput Math, 39, 1, 175-192 (2013) · Zbl 1271.65132
[47] Sherratt, JA; Smith, MJ, Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models, J R Soc Interface, 5, 22, 483-505 (2008)
[48] Sherratt, JA; Lewis, MA; Fowler, AC, Ecological chaos in the wake of invasion, Proc Natl Acad Sci, 92, 7, 2524-2528 (1995) · Zbl 0819.92024
[49] Sherratt, JA; Lambin, X.; Sherratt, T., The effects of the size and shape of landscape features on the formation of traveling waves in cyclic populations, Am Nat, 162, 4, 503-513 (2003)
[50] Shigesada, N.; Kawasaki, K.; Teramoto, E., Traveling periodic waves in heterogeneous environments, Theor Popul Biol, 30, 1, 143-160 (1986) · Zbl 0591.92026
[51] Sieber, M.; Malchow, H.; Petrovskii, SV, Noise-induced suppression of periodic travelling waves in oscillatory reaction-diffusion systems, Proc R Soc A Math Phys Eng Sci, 466, 2119, 1903-1917 (2010) · Zbl 1192.35193
[52] Skellam, JG, Random dispersal in theoretical populations, Biometrika, 38, 1-2, 196-218 (1951) · Zbl 0043.14401
[53] Smith, MJ; Sherratt, JA, The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction-diffusion systems, Physica D, 236, 2, 90-103 (2007) · Zbl 1361.34040
[54] Smith, JA; Donadio, E.; Pauli, JN; Sheriff, MJ; Bidder, OR; Middleton, AD, Habitat complexity mediates the predator-prey space race, Ecology, 100, 7 (2019)
[55] Stone, L.; He, D., Chaotic oscillations and cycles in multi-trophic ecological systems, J Theor Biol, 248, 2, 382-390 (2007) · Zbl 1451.92338
[56] Strohm, S.; Tyson, R., The effect of habitat fragmentation on cyclic population dynamics: a numerical study, Bull Math Biol, 71, 6, 1323-1348 (2009) · Zbl 1171.92348
[57] Tenow, O.; Nilssen, AC; Bylund, H.; Pettersson, R.; Battisti, A.; Bohn, U.; Caroulle, F.; Ciornei, C.; Csóka, G.; Delb, H., Geometrid outbreak waves travel across Europe, J Anim Ecol, 82, 1, 84-95 (2013)
[58] Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates Inc, ISBN 978-0878938476
[59] Turchin P (2003) Complex population dynamics: a theoretical/empirical synthesis, vol 35. Princeton University Press · Zbl 1062.92077
[60] Vitense, K.; Wirsing, AJ; Tyson, RC; Anderson, JJ, Theoretical impacts of habitat loss and generalist predation on predator-prey cycles, Ecol Model, 327, 85-94 (2016)
[61] Wolfram Research I (2019) Mathematica, Version 10.0. Champaign, IL, 2019
[62] Yurk, BP; Cobbold, CA, Homogenization techniques for population dynamics in strongly heterogeneous landscapes, J Biol Dyn, 12, 1, 171-193 (2018) · Zbl 1447.92547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.