×

How do dispersal rates affect the transition from periodic to irregular spatio-temporal oscillations in invasive predator-prey systems? (English) Zbl 1411.92242

Summary: When one considers the spatial aspects of a cyclic predator-prey interaction, ecological events such as invasions can generate periodic travelling waves (PTWs)–sometimes known as wavetrains. In certain instances PTWs may destabilise into spatio-temporal irregularity due to convective type instabilities, which permit a fixed width band of PTWs to develop behind the propagating invasion front. In this paper, we detail how one can locate this transition when one has unequal predator and prey dispersal rates. We do this by using absolute stability theory combined with a recent derivation of the amplitude of PTWs behind invasion. This work is applicable to a wide range of reaction-diffusion type predator-prey models, but in this paper we apply it to a specific set of equations (the Leslie-May model). We show that the width of PTW band increases/decreases when the ratio of prey and predator dispersal rates is large/small.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
35C07 Traveling wave solutions

Software:

PRED_PREY
Full Text: DOI

References:

[1] Hellmann, J. J.; Byers, J. E.; Bierwagen, B. G.; Dukes, J. S., Five potential consequences of climate change for invasive species, Conserv. Biol., 22, 3, 534-543 (2008)
[2] Doherty, T. S.; Glen, A. S.; Nimmo, D. G.; Ritchie, E. G.; Dickman, C. R., Invasive predators and global biodiversity loss, Proc. Natl. Acad. Sci. USA, 113, 40, 11261-11265 (2016)
[3] Sherratt, J. A.; Smith, M. J., Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models, J. R. Soc. Interface, 5, 22, 483-505 (2008)
[4] Merchant, S. M.; Nagata, W., Wave train selection behind invasion fronts in reaction-diffusion predator-prey models, Physica D, 239, 1670-1680 (2010) · Zbl 1204.37087
[5] Merchant, S. M.; Nagata, W., Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition, Theor. Popul. Biol., 80, 4, 289-297 (2011) · Zbl 1323.92177
[6] Petrovskii, S.; Vinogradov, M.; Morozov, A. Y., Spatial-temporal dynamics of a localized populational “burst” in a distributed prey-predator system, Okeanologiya, 38, 6, 881-890 (1998)
[7] Davidson, F., Chaotic wakes and other wave-induced behavior in a system of reaction-diffusion equations, Int. J. Bifurcation Chaos, 8, 06, 1303-1313 (1998) · Zbl 0935.35068
[8] Petrovskii, S. V.; Malchow, H., Critical phenomena in plankton communities: KISS model revisited, Nonlinear Anal. RWA, 1, 1, 37-51 (2000) · Zbl 0996.92037
[9] Petrovskii, S. V.; Malchow, H., Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics, Theor. Popul. Biol., 59, 2, 157-174 (2001) · Zbl 1035.92046
[10] Garvie, M. R., Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB, Bull. math. biol., 69, 3, 931-956 (2007) · Zbl 1298.92081
[11] Garvie, M. R.; Burkardt, J.; Morgan, J., Simple finite element methods for approximating predator-prey dynamics in two dimensions using matlab, Bull. Math. Biol., 77, 3, 548-578 (2015) · Zbl 1332.92053
[12] Banerjee, M.; Petrovskii, S., Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system, Theor. Ecol., 4, 1, 37-53 (2011)
[13] Sherratt, J. A., Periodic travelling waves in cyclic predator prey systems, Ecol. Lett., 4, 30-37 (2001)
[14] Kopell, N.; Howard, L. N., Plane wave solutions to reaction-diffusion equations, Stud. Appl. Math., 52, 291-328 (1973) · Zbl 0305.35081
[15] Sherratt, J. A.; Smith, M. J.; Rademacher, J. D.M., Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion, Proc. Natl. Acad. Sci. USA, 106, 10890-10895 (2009) · Zbl 1203.37062
[16] Sherratt, J. A., On the evolution of periodic plane waves in reaction-diffusion equations of \(\lambda-\omega\) type, SIAM J. Appl. Math., 54, 1374-1385 (1994) · Zbl 0806.35080
[17] Smith, M. J.; Sherratt, J. A., Propagating fronts in the complex Ginzburg-Landau equation generate fixed-width bands of plane waves, Phys. Rev. E, 80, 4, 046209 (2009)
[18] Bennett, J. J.R.; Sherratt, J. A., Periodic traveling waves generated by invasion in cyclic predator-prey systems: The effect of unequal dispersal, SIAM J. Appl. Math., 77, 6, 2136-2155 (2017) · Zbl 1387.35089
[19] van Saarloos, W., Front propagation into unstable states, Phys. Rep., 386, 29-222 (2003) · Zbl 1042.74029
[20] Dagbovie, A. S.; Sherratt, J. A., Absolute stability and dynamical stabilisation in predator-prey systems, J. Math. Biol., 68, 6, 1403-1421 (2014) · Zbl 1284.92109
[21] Sherratt, J. A.; Dagbovie, A. S.; Hilker, F. M., A mathematical biologist’s guide to absolute and convective instability, Bull. Math. Biol., 76, 1, 1-26 (2014) · Zbl 1283.92007
[22] Rademacher, J.; Sandstede, B.; Scheel, A., Computing absolute and essential spectra using continuation, Physica D, 229, 166-183 (2007) · Zbl 1119.65114
[23] Smith, M. J.; Rademacher, J. D.; Sherratt, J. A., Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type, SIAM J. Appl. Dyn. Syst., 8, 3, 1136-1159 (2009) · Zbl 1183.35032
[24] Sandstede, B.; Scheel, A., Absolute and convective instabilities of waves on unbounded and large bounded domains, Physica D, 145, 233-277 (2000) · Zbl 0963.34072
[25] Leslie, P. H., Some further notes on the use of matrices in population dynamics, Biometrika, 35, 213-245 (1948) · Zbl 0034.23303
[26] May, R., Stability and Complexity in Model Ecosystems (1974), Princeton University Press
[27] Murray, J. D., Mathematical Biology I : An Introduction (2002), Springer · Zbl 1006.92001
[28] Rosenzweig, M. L.; MacArthur, R. H., Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97, 895, 209-223 (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.