×

Wave profile, Paul-Painlevé approaches and phase plane analysis to the generalized (3+1)-dimensional shallow water wave model. (English) Zbl 1530.35101

Summary: In this paper, the solitary wave solutions, the periodic type, and single soliton solutions are acquired. Here, the Hirota bilinear operator is employed to investigate single soliton, periodic wave solutions and the asymptotic case of periodic wave solutions. By utilizing symbolic computation and the applied method, generalized (3+1)-dimensional shallow water wave (GSWW) equation is investigated. The variational principle scheme to case periodic forms is studied. The (3+1)-GSWW model exhibits travelling waves, as shown by the research in the current paper. Through three-dimensional design, contour design, density design, and two-dimensional design using Maple, the physical features of single soliton and periodic wave solutions are explained all right. The findings demonstrate the investigated model’s broad variety of explicit solutions. As a result, exact solitary wave solutions to the studied issues, including solitary, single soliton, and periodic wave solution, are found. The phase plane is quickly examined after establishing the Hamiltonian function. The effects of wave velocity and other free factors on the wave profile are also investigated. It is shown that the approach is practical and flexible in mathematical physics. All outcomes in this work are necessary to understand the physical meaning and behavior of the explored results and shed light on the significance of the investigation of several nonlinear wave phenomena in sciences and engineering.

MSC:

35C07 Traveling wave solutions
35C08 Soliton solutions
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Xu, K.; Guo, Y.; Liu, Y.; Deng, X.; Chen, Q.; Ma, Z., 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology, IEEE Electron Device Lett., 42, 8, 1120-1123 (2021) · doi:10.1109/LED.2021.3091277
[2] Li, Q.; Lin, H.; Tan, X.; Du, S., \(H \infty\) consensus for multiagent-based supply chain systems under switching topology and uncertain demands, IEEE Trans. Syst. Man Cybern.: Syst., 50, 12, 4905-4918 (2020) · doi:10.1109/TSMC.2018.2884510
[3] Wang, F.; Wang, H.; Zhou, X.; Fu, R., A driving fatigue feature detection method based on multifractal theory, IEEE Sens. J., 22, 19, 19046-19059 (2022) · doi:10.1109/JSEN.2022.3201015
[4] Alimirzaluo, E.; Nadjafikhah, M.; Manafian, J., Some new exact solutions of (3+1)-dimensional Burgers system via Lie symmetry analysis, Adv. Differ. Equ., 2021, 60 (2021) · Zbl 1487.35021 · doi:10.1186/s13662-021-03220-3
[5] Dorizzi, B.; Grammaticos, B.; Ramani, A.; Winternitz, P., Are all the equations of the Kadomtsev-Petviashvili hierarchy integrable?, J. Math. Phys., 27, 2848-2852 (1986) · Zbl 0619.35086 · doi:10.1063/1.527260
[6] Manafian, J., On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, Eur. Phys. J. Plus, 130, 255 (2015) · doi:10.1140/epjp/i2015-15255-5
[7] Manafian, J.; Foroutan, MR; Guzali, A., Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model, Eur. Phys. J. Plus, 132, 494 (2017) · doi:10.1140/epjp/i2017-11762-7
[8] Manafian, J., Optical soliton solutions for Schrödinger type nonlinear evolution equations by the \(tan(\phi /2)\)-expansion method, Optik, 127, 4222-4245 (2016) · doi:10.1016/j.ijleo.2016.01.078
[9] Zhou, Y.; Wang, C.; Zhang, X., Rational localized waves and their Absorb-Emit interactions in the (2+1)-dimensional Hirota-Satsuma-Ito equation, Mathematics, 8, 1807 (2020) · doi:10.3390/math8101807
[10] Tchier, F.; Yusuf, A.; Aliyu, AI; Inc, M., Soliton solutions and conservation laws for lossy nonlinear transmission line equation, Superlatt. Microstruct., 107, 320-336 (2017) · doi:10.1016/j.spmi.2017.04.003
[11] Samadi, M.; Sarkardeh, H.; Jabbari, E., Prediction of the dynamic pressure distribution in hydraulic structures using soft computing methods, Soft. Comput., 25, 3873-3888 (2021) · doi:10.1007/s00500-020-05413-6
[12] Li, R.; Bu Sinnah, ZA; Shatouri, ZM; Manafian, J.; Aghdaei, MF; Kadi, A., Different forms of optical soliton solutions to the Kudryashov’s quintuple self-phase modulation with dual-form of generalized nonlocal nonlinearity, Results Phys., 46 (2023) · doi:10.1016/j.rinp.2023.106293
[13] Yin, Z.; Liu, Z.; Liu, X.; Zheng, W.; Yin, L., Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey, Ecol. Ind., 154 (2023) · doi:10.1016/j.ecolind.2023.110765
[14] Wang, B., Shen, Y., Li, N., Zhang, Y., Gao, Z.: An adaptive sliding mode fault-tolerant control of a quadrotor unmanned aerial vehicle with actuator faults and model uncertainties. Int. J. Robust Nonlinear Control (2023)
[15] Wang, B.; Zhang, Y.; Zhang, W., A composite adaptive Fault-Tolerant attitude control for a quadrotor UAV with multiple uncertainties, J. Syst. Sci. Complex., 35, 1, 81-104 (2022) · Zbl 1485.93302 · doi:10.1007/s11424-022-1030-y
[16] Feng, Y.; Zhang, B.; Liu, Y.; Niu, Z.; Fan, Y.; Chen, X., A D-band manifold triplexer with high isolation utilizing novel waveguide dual-mode filters, IEEE Trans. Terahertz Sci. Technol., 12, 6, 678-681 (2022) · doi:10.1109/TTHZ.2022.3203308
[17] Sherazi, K.; Sheikh, N.; Anjum, M.; Raza, AG, Solar drying experimental research and mathematical modelling of wild mint and peach moisture content, J. Asian Sci. Res., 13, 2, 94-107 (2023)
[18] Otenkaya, OB; Pakfiliz, AG, Increasing the radar cross section using phase array antenna in the body structure of miniature air-launched decoy platforms, Rev. Comput. Eng. Res., 10, 1, 1-15 (2023) · doi:10.18488/76.v10i1.3308
[19] Ghasemi, M.; Samadi, M.; Soleimanian, E.; Chau, KW, A comparative study of black-box and white-box data-driven methods to predict landfill leachate permeability, Environ. Monit. Asses., 195, 7, 862 (2023) · doi:10.1007/s10661-023-11462-9
[20] Velidi, G., Pressure and velocity variation in remote-controlled plane using CFD analysis, J. Airline Oper. Aviat. Manag., 1, 1, 9-18 (2022)
[21] Kumar Vandrangi, S., Aerodynamic characteristics of NACA 0012 airfoil by CFD analysis, J. Airline Oper. Aviat. Manag., 1, 1, 1-8 (2022)
[22] Mishra, N.; Jain, A.; Nair, A.; Khanna, B.; Mitra, S., Experimental investigation on a ducted savonius vertical axis wind turbine and its performance comparison with and without endplates, Renew. Energy Res. Appl., 1, 1, 1-9 (2020)
[23] Salek, F.; Rahnama, M.; Eshghi, H.; Babaie, M.; Naserian, MM, Investigation of solar-driven hydroxy gas production system performance integrated with photovoltaic panels with single-axis tracking system, Renew. Energy Res. Appl., 3, 1, 31-40 (2022)
[24] Dawod, LA; Lakestani, M.; Manafian, J., Breather wave solutions for the (3+1)-D generalized shallow water wave equation with variable coefficients, Qual. Theory Dyn. Syst., 22, 127 (2023) · Zbl 1522.35400 · doi:10.1007/s12346-023-00826-8
[25] Pan, Y.; Manafian, J.; Zeynalli, SM; Al-Obaidi, R.; Sivaraman, R.; Kadi, A., N-lump solutions to a (3+1)-dimensional variable-coefficient generalized nonlinear wave equation in a liquid with gas bubbles, Qual. Theory Dyn. Syst., 21, 127 (2022) · Zbl 1498.35013 · doi:10.1007/s12346-022-00658-y
[26] Zhou, B.; Zheng, Z.; Zhang, Q.; Jin, P.; Wang, L.; Ning, D., Wave attenuation and amplification by an abreast pair of floating parabolic breakwaters, Energy, 271 (2023) · doi:10.1016/j.energy.2023.127077
[27] Yin, L.; Wang, L.; Keim, BD; Konsoer, K.; Yin, Z.; Liu, M.; Zheng, W., Spatial and wavelet analysis of precipitation and river discharge during operation of the Three Gorges Dam, China, Ecol. Indic., 154 (2023) · doi:10.1016/j.ecolind.2023.110837
[28] Yin, L.; Wang, L.; Li, T.; Lu, S.; Yin, Z.; Liu, X.; Zheng, W., U-Net-STN: a novel end-to-end lake boundary prediction model, Land, 12, 8, 1602 (2023) · doi:10.3390/land12081602
[29] Luo, R.; Peng, Z.; Hu, J., On model identification based optimal control and it’s applications to multi-agent learning and control, Mathematics, 11, 4, 906 (2023) · doi:10.3390/math11040906
[30] Mehrpooya, M.; Ghadimi, N.; Marefati, M.; Ghorbanian, SA, Numerical investigation of a new combined energy system includes parabolic dish solar collector, stirling engine and thermoelectric device, Int. J. Energy Res., 45, 11, 16436-16455 (2021) · doi:10.1002/er.6891
[31] Jiang, W.; Wang, X.; Huang, H.; Zhang, D.; Ghadimi, N., Optimal economic scheduling of microgrids considering renewable energy sources based on energy hub model using demand response and improved water wave optimization algorithm, J. Energy Storage, 55, 1 (2022) · doi:10.1016/j.est.2022.105311
[32] Erfeng, H.; Ghadimi, N., Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm, Sustain. Energy Technol. Assess., 52 (2022)
[33] Han, E.; Ghadimi, N., Model identification of proton-exchange membrane fuel cells based on a hybrid convolutional neural network and extreme learning machine optimized by improved honey badger algorithm, Sustain. Energy Technol. Assess., 52 (2022)
[34] Cai, W.; Mohammaditab, R.; Fathi, G.; Wakil, K.; Ebadi, AG; Ghadimi, N., Optimal bidding and offering strategies of compressed air energy storage: a hybrid robust-stochastic approach, Renew. Energy, 143, 1-8 (2019) · doi:10.1016/j.renene.2019.05.008
[35] Yu, D.; Zhang, T.; He, G.; Nojavan, S.; Jermsittiparsert, K.; Ghadimi, N., Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique, J. Energy Storage, 27 (2020) · doi:10.1016/j.est.2019.101054
[36] Saeedi, M.; Moradi, M.; Hosseini, M.; Emamifar, A.; Ghadimi, N., Robust optimization based optimal chiller loading under cooling demand uncertainty, Appl. Thermal Eng., 148, 1081-1091 (2019) · doi:10.1016/j.applthermaleng.2018.11.122
[37] Yuan, Z.; Wang, W.; Wang, H.; Ghadimi, N., Probabilistic decomposition-based security constrained transmission expansion planning incorporating distributed series reactor, IET Gener. Trans. Distrib., 14, 17, 3478-3487 (2020) · doi:10.1049/iet-gtd.2019.1625
[38] Mir, M.; Shafieezadeh, M.; Heidari, MA; Ghadimi, N., Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction, Evol. Sys., 11, 4, 559-573 (2020) · doi:10.1007/s12530-019-09271-y
[39] Zhang, J.; Khayatnezhad, M.; Ghadimi, N., Optimal model evaluation of the proton exchange membrane fuel cells based on deep learning and modified African vulture optimization algorithm, Energy Sources A, 44, 287-305 (2022) · doi:10.1080/15567036.2022.2043956
[40] Zhang, X.; Wang, Y.; Yuan, X.; Shen, Y.; Lu, Z.; Wang, Z., Adaptive dynamic surface control with disturbance observers for battery/supercapacitor-based hybrid energy sources in electric vehicles, IEEE Trans. Transp. Electrif. (2022) · doi:10.1109/TTE.2022.3194034
[41] Chen, L.; Huang, H.; Tang, P.; Yao, D.; Yang, H.; Ghadimi, N., Optimal modeling of combined cooling, heating, and power systems using developed African vulture optimization: a case study in watersport complex, Energy Sources A, 44, 4296-4317 (2022) · doi:10.1080/15567036.2022.2074174
[42] Wang, XB; Tian, SF, Exotic vector freak waves in the nonlocal nonlinear Schrödinger equation, Phys. D: Nonlinear Phenomena, 442 (2022) · Zbl 1504.35501 · doi:10.1016/j.physd.2022.133528
[43] Wang, XB, Quasi-periodic wave solutions of the nonlocal coupled nonlinear Schrödinger equation, Appl. Math. Lett., 132 (2022) · Zbl 1492.35321 · doi:10.1016/j.aml.2022.108086
[44] Wang, XB; Tian, SF, Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation, Theor. Math. Phys., 212, 3, 1193-1210 (2022) · Zbl 1516.37110 · doi:10.1134/S0040577922090033
[45] Singh, S.; Sakkaravarthi, K.; Tamizhmani, T.; Murugesan, K., Painlevé analysis and higher-order rogue waves of a generalized (3+1)-dimensional shallow water wave equation, Phys. Scr., 97, 5 (2022) · doi:10.1088/1402-4896/ac5f90
[46] Yu, S.; Huang, L., Exact solutions of the generalized (2+1)-dimensional shallow water wave equation, Results Phys., 42 (2022) · doi:10.1016/j.rinp.2022.106020
[47] Manafian, J.; Ilhan, OA; Alizadeh, A.; Mohammed, SA, Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics, Commun. Theor. Phys., 72 (2020) · Zbl 1451.76026 · doi:10.1088/1572-9494/ab8a13
[48] Kudryashov, NA, The Painlevé approach for finding solitary wave solutions of nonlinear nonintegrable differential equations, Optik, 183, 642-649 (2019) · doi:10.1016/j.ijleo.2019.02.087
[49] Ma, WX, Bilinear equations, Bell polynomials and linear superposition principle, J. Phys.: Conf. Ser., 411 (2013)
[50] Dong, HH; Zhang, YF; Zhang, YF; Yin, BS, Generalized bilinear differential operators, binary bell polynomials, and exact periodic wave solution of Boiti-Leon-Manna-Pempinelli equation, Abs. Appl. Anal., 2014 (2014) · Zbl 1474.35225
[51] Ma, WX; Zhou, Y., Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differ. Equ., 264, 4, 2633-2659 (2018) · Zbl 1387.35532 · doi:10.1016/j.jde.2017.10.033
[52] Zhang, RF; Li, MC, Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations, Nonlinear Dyn., 108, 521-531 (2022) · doi:10.1007/s11071-022-07207-x
[53] Zhang, RF; Bilige, S., Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation, Nonlinear Dyn., 95, 3041-3048 (2019) · Zbl 1437.35136 · doi:10.1007/s11071-018-04739-z
[54] Zhang, RF; Bilige, S.; Chaolu, T., Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method, J. Syst. Sci. Complex., 34, 122-139 (2021) · Zbl 1461.35097 · doi:10.1007/s11424-020-9392-5
[55] Zhang, RF; Li, MC; Gan, JY; Li, Q.; Lan, ZZ, Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method, Chaos Solitons Fract., 154 (2022) · Zbl 1498.35162 · doi:10.1016/j.chaos.2021.111692
[56] Zhang, RF; Bilige, S.; Liu, JG; Li, M., Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method, Phys. Scr., 96, 2 (2021) · doi:10.1088/1402-4896/abd3c3
[57] Gu, Y.; Malmir, S.; Manafian, J.; Ilhan, OA; Alizadeh, A.; Othman, AJ, Variety interaction between \(k\)-lump and \(k\)-kink solutions for the (3+1)-D Burger system by bilinear analysis, Results Phys., 43 (2022) · doi:10.1016/j.rinp.2022.106032
[58] Ali, NH; Mohammed, SA; Manafian, J., New explicit soliton and other solutions of the Van der Waals model through the EShGEEM and the IEEM, J. Mod. Technol. Eng., 8, 1, 5-18 (2023)
[59] Khater, MMA, Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson-Pickering equation, Results Phys., 44 (2023) · doi:10.1016/j.rinp.2022.106193
[60] Qian, Y.; Manafian, J.; Asiri, M.; Mahmoud, KH; Alanssari, AI; Alsubaie, AS, Nonparaxial solitons and the dynamics of solitary waves for the coupled nonlinear Helmholtz systems, Opt. Quant. Electon., 55, 1022 (2023) · doi:10.1007/s11082-023-05232-7
[61] Khater, MMA, Long waves with a small amplitude on the surface of the water behave dynamically in nonlinear lattices on a non-dimensional grid, Int. J. Mod. Phys. B, 37, 19, 2350188 (2023) · doi:10.1142/S0217979223501886
[62] Khater, MMA, Hybrid accurate simulations for constructing some novel analytical and numerical solutions of three-order GNLS equation, Int. J. Geom. Methods Mod. Phys., 20, 9, 2350159 (2023) · Zbl 1532.35425 · doi:10.1142/S0219887823501591
[63] Khater, MMA, Soliton propagation under diffusive and nonlinear effects in physical systems; (1+1)-dimensional MNW integrable equation, Phys. Lett. A, 480 (2023) · Zbl 1527.35130 · doi:10.1016/j.physleta.2023.128945
[64] Chen, W.; Manafian, J.; Mahmoud, KH; Alsubaie, AS; Aldurayhim, A.; Alkader, A., Cutting-edge analytical and numerical approaches to the Gilson-Pickering equation with plenty of soliton solutions, Mathematics, 11, 16, 3454 (2023) · doi:10.3390/math11163454
[65] Arefin, MA; Saeed, MA; Ali Akbar, M.; Hafiz Uddin, M., Analytical behavior of weakly dispersive surface and internal waves in the ocean, J. Ocean Eng. Sci., 7, 4, 305-312 (2022) · doi:10.1016/j.joes.2021.08.012
[66] Manafian, J.; Takami, SFS; Eslami, B.; Malmir, S.; Sood, A.; Sabherwal, AK, Dynamical behaviors of lumpoff and rogue wave solutions for nonlocal Gardner equation, Math. Prob. Eng., 2022 (2022) · doi:10.1155/2022/9360263
[67] Safi Ullah, M.; Or-Roshid, H.; Alshammari, FS; Ali, MZ, Collision phenomena among the solitons, periodic and Jacobi elliptic functions to a (3+1)-dimensional Sharma-Tasso-Olver-like model, Results Phys., 36 (2022) · doi:10.1016/j.rinp.2022.105412
[68] Zaman, U.H.M., Arefin, M.A., Ali Akbar, M., Hafiz Uddin, M.: Analyzing numerous travelling wave behavior to the fractional-order nonlinear Phi-4 and Allen-Cahn equations throughout a novel technique. Results Phys. 37, 105486 (2022)
[69] Hafiz Uddin, M., Zaman, U.H.M., Arefin, M.A., Ali Akbar, M.: Nonlinear dispersive wave propagation pattern in optical fiber system. Chaos Solitons Fract. 164, 112596 (2022) · Zbl 1508.35203
[70] Safi Ullah, M.; Seadawy, AR; Ali, MZ; Or-Roshid, H., Optical soliton solutions to the Fokas-Lenells model applying the \(\varphi^6\)-model expansion approach, Opt. Quant. Electron., 55, 495 (2023) · doi:10.1007/s11082-023-04771-3
[71] Safi Ullah, M.; Or-Roshid, H.; Ali, MZ; Rezazadeh, H., Kink and breather waves with and without singular solutions to the Zoomeron model, Results Phys., 49 (2023) · doi:10.1016/j.rinp.2023.106535
[72] Manafian, J.; Allahverdiyeva, N., An analytical analysis to solve the fractional differential equations, Adv. Math. Models Appl., 6, 2, 128-161 (2021)
[73] Wang, X.; Manafian, J.; Mahendra, WE; Abed, AM; Mahmoud, MZ; Liang, G., Combined damped sinusoidal oscillation solutions to the (3+1)-D variable-coefficient Generalized NLW equation in liquid with gas bubbles, Adv. Math. Phys., 2022, 8144911 (2022) · Zbl 1496.35142 · doi:10.1155/2022/8144911
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.