×

Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. (English) Zbl 1437.35136

Summary: A new method named bilinear neural network is introduced in this paper, and the corresponding tensor formula is proposed to obtain the exact analytical solutions of nonlinear partial differential equations (PDEs). This is the first time that the neural network model is used to find the exact analytical solution, and this method covers almost all methods of constructing a function after bilinearization to solve nonlinear PDEs. Furthermore, this method is most likely a universal method to obtain the exact analytical solutions of nonlinear PDEs. Abundant arbitrary functions solutions of the reduced p-gBKP equation are obtained by using this method. Various beautiful plots of the presented solutions, which show diversity of exact solutions to PDEs, are made. By choosing appropriate values and functions, the fractal solitons waves are obtained and the self-similar characteristics of these waves are observed by reducing the observation range and magnifying local images. Via various three-dimensional plots, the evolution characteristics of these waves are exhibited.

MSC:

35C05 Solutions to PDEs in closed form
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Liu, X.Y., Triki, H., Zhou, Q., Liu, W.J., Biswas, A.: Analytic study on interactions between periodic solitons with controllable parameters. Nonlinear Dyn. 94, 703-709 (2018) · doi:10.1007/s11071-018-4387-7
[2] Zhang, Y., Liu, Y.P., Tang, X.Y.: M-lump and interactive solutions to a (3+1)-dimensional nonlinear system. Nonlinear Dyn. 93, 2533-2541 (2018) · Zbl 1398.35014 · doi:10.1007/s11071-018-4340-9
[3] Zhang, Y.J., Yang, C.Y., Yu, W.T., Mirzazadeh, M., Zhou, Q., Liu, W.J.: Interactions of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers. Nonlinear Dyn. 94, 1351-1360 (2018) · doi:10.1007/s11071-018-4428-2
[4] Ankiewicz, A., Akhmediev, N.: Rogue wave-type solutions of the mKdV equation and their relation to known NLSE rogue wave solutions. Nonlinear Dyn. 91, 1931-1938 (2018) · doi:10.1007/s11071-017-3991-2
[5] Carboni, B., Lacarbonara, W.: Nonlinear dynamic characterization of a new hysteretic device: experiments and computations. Nonlinear Dyn. 83, 23-39 (2016) · doi:10.1007/s11071-015-2305-9
[6] Tang, Y.N., Tao, S.Q., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Nonlinear Dyn. 89, 429-442 (2017) · doi:10.1007/s11071-017-3462-9
[7] Arena, A., Lacarbonara, W.: Nonlinear parametric modeling of suspension bridges under aeroelastic forces: torsional divergence and flutter. Nonlinear Dyn. 70, 2487-2510 (2012) · doi:10.1007/s11071-012-0636-3
[8] Zhang, R.F., Bilige, S.D., Bai, Y.X., Lü, J.Q., Gao, X.Q.: Interaction phenomenon to dimensionally reduced p-gBKP equation. Mod. Phys. Lett. B. 32(6), 1850074 (2018) · doi:10.1142/S0217984918500744
[9] Lü, J.Q., Bilige, S.D., Chaolu, T.: The study of lump solution and interaction phenomenon to (2+1)-dimensional generalized fifth-order kdv equation. Nonlinear Dyn. 91(2), 1669-1676 (2018) · doi:10.1007/s11071-017-3972-5
[10] Lü, J.Q., Bilige, S.D., Gao, X.Q., Bai, Y.X., Zhang, R.F.: Abundant lump solutions and interaction phenomena to the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation. J. Appl. Math. Phys. 6, 1733-1747 (2018) · doi:10.4236/jamp.2018.68148
[11] Lv, J.Q., Bilige, S.D.: Lump solutions of a (2+1)-dimensional bSK equation. Nonlinear Dyn. 90, 2119-2124 (2017) · doi:10.1007/s11071-017-3788-3
[12] Lü, J.Q., Bilige, S.D.: Diversity of interaction solutions to the (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation. Mod. Phys. Lett. B. 13, 1850311 (2018) · doi:10.1142/S0217984918503116
[13] Wang, X.M., Bilige, S.D., Bai, Y.X.: A general sub-equation method to the burgers-like equation. Therm. Sci. 21(4), 1681-1687 (2017) · doi:10.2298/TSCI160812053W
[14] Lü, J.Q., Bilige, S.D.: The study of lump solution and interaction phenomenon to (2+1)-dimensional potential Kadomstev-Petviashvili equation. Math. Phys. Anal. (2018). https://doi.org/10.1007/s13324-018-0256-2 · Zbl 1436.37089
[15] Liu, J.G., Du, J.Q., Zeng, Z.F., Nie, B.: New three-wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Nonlinear Dyn. 88(1), 655-661 (2017) · doi:10.1007/s11071-016-3267-2
[16] Liu, J.G.: Lump-type solutions and interaction solutions for the (2+1)-dimensional generalized fifth-order KdV equation. Appl. Math. Lett. 86, 36-41 (2018) · Zbl 1410.35175 · doi:10.1016/j.aml.2018.06.011
[17] Li, Y., Liu, J.G.: New periodic solitary wave solutions for the new (2+1)-dimensional Korteweg – de Vries equation. Nonlinear Dyn. 91(1), 497-504 (2018) · doi:10.1007/s11071-017-3884-4
[18] Lü, Z.S., Chen, Y.N.: Construction of rogue wave and lump solutions for nonlinear evolution equations. Eur. Phys. J. B 88(7), 88-187 (2015) · doi:10.1140/epjb/e2015-60056-y
[19] Lü, Z.S., Chen, Y.N.: Constructing rogue wave prototypes of nonlinear evolution equations via an extended tanh method. Chaos Solitons Fractals 81, 218-223 (2015) · Zbl 1355.35041 · doi:10.1016/j.chaos.2015.09.022
[20] Zhao, Z.L., Chen, Y., Han, B.: Lump soliton, mixed lump stripe and periodic lump solutions of a (2+1)-dimensional asymmetrical Nizhnik Novikov Veselov equation. Mod. Phys. Lett. B 31(14), 1750157 (2017) · doi:10.1142/S0217984917501573
[21] Zhang, X.E., Chen, Y.: Deformation rogue wave to the (2+1)-dimensional KdV equation. Nonlinear Dyn. 90(2), 755-763 (2017) · doi:10.1007/s11071-017-3757-x
[22] Zhang, X.E., Chen, Y.: Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo-Miwa equation. Commun. Nonlinear Sci. Numer. Simul. 52, 24-31 (2017) · Zbl 1510.35259 · doi:10.1016/j.cnsns.2017.03.021
[23] Xu, T., Chen, Y.: Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schr \[\ddot{o}\] o¨dinger equations. Nonlinear Dyn. 92, 2133-2142 (2018) · doi:10.1007/s11071-018-4185-2
[24] Yang, B., Chen, Y.: Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations. Nonlinear Dyn. 94, 489-502 (2018) · Zbl 1412.35315 · doi:10.1007/s11071-018-4373-0
[25] Zhang, X.E., Chen, Y.: General high-order rogue waves to nonlinear Schrödinger-Boussinesq equation with the dynamical analysis. Nonlinear Dyn. 93, 2169-2184 (2018) · Zbl 1398.35219 · doi:10.1007/s11071-018-4317-8
[26] Wazwaz, A.M.: Two-mode fifth-order kdv equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87(3), 1685-1691 (2017) · doi:10.1007/s11071-016-3144-z
[27] Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional kdv equation with variable coefficients. Appl. Math. Comput. 321, 282-289 (2018) · Zbl 1426.35204
[28] Wazwaz, A.M.: Compact and noncompact physical structures for the ZK-BBM equation. Appl. Math. Comput. 169(1), 713-725 (2017) · Zbl 1078.35527
[29] Sun, Y., Tian, B., Xie, X.Y., Chai, J., Yin, H.H.: Rogue waves and lump solitons for a-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. Waves Random Complex Media 28(3), 544-552 (2018) · Zbl 07583374 · doi:10.1080/17455030.2017.1367866
[30] Dong, M.J., Tian, S.F., Wang, X.B., Zhang, T.T.: Lump-type solutions and interaction solutions in the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation. Anal. Math. Phys. (2018). https://doi.org/10.1007/s13324-018-0258-0 · Zbl 1425.35173
[31] Yong, X.L., Li, X.J., Huang, Y.H.: General lump-type solutions of the (3+1)-dimensional Jimbo-Miwa equation. Appl. Math. Lett. 86, 222-228 (2018) · Zbl 1410.35191 · doi:10.1016/j.aml.2018.07.001
[32] Jia, S.L., Gao, Y.T., Hu, L., Huang, Q.M., Hu, W.Q.: Soliton-like periodic wave and rational solutions for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation in the incompressible fluid. Superlattices Microstruct. 102, 273-283 (2017) · doi:10.1016/j.spmi.2016.12.019
[33] Zhang, Y., Dong, H.H., Zhang, X.E., Yang, H.W.: Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation. Comput. Math. Appl. 73, 246-252 (2017) · Zbl 1368.35240 · doi:10.1016/j.camwa.2016.11.009
[34] Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923-931 (2016) · Zbl 1354.35127 · doi:10.1007/s11071-015-2539-6
[35] Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633-2659 (2018) · Zbl 1387.35532 · doi:10.1016/j.jde.2017.10.033
[36] Zhang, J.B., Ma, W.X.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74, 591-596 (2017) · Zbl 1387.35540 · doi:10.1016/j.camwa.2017.05.010
[37] Yang, J.Y., Ma, W.X., Qin, Z.Y.: Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal. Math. Phys. 8, 427-436 (2018) · Zbl 1403.35261 · doi:10.1007/s13324-017-0181-9
[38] Ma, W.X., Yong, X., Zhang, H.Q.: Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75, 289-295 (2018) · Zbl 1416.35232 · doi:10.1016/j.camwa.2017.09.013
[39] Ma, W.X.: Generalized bilinear differential equations. Stud. Nonlinear Sci. 2(4), 140-144 (2011)
[40] Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379(36), 1975-1978 (2015) · Zbl 1364.35337 · doi:10.1016/j.physleta.2015.06.061
[41] Ma, W.X.: Bilinear equations, Bell polynomials and linear superposition principal. J. Phys. 411, 12021 (2013)
[42] Ma, W.X., Yong, X., Zhang, H.Q.: Diversity of interaction solutions to the (2+1)-dimensional ito equation. Comput. Math. Appl. 75(1), 289-295 (2018) · Zbl 1416.35232 · doi:10.1016/j.camwa.2017.09.013
[43] Zhang, H.Q., Ma, W.X.: Lump solutions to the (2+1)-dimensional Sawada-Kotera equation. Nonlinear Dyn. 87(4), 2305-2310 (2017) · doi:10.1007/s11071-016-3190-6
[44] Ma, W.X.: Lump-type solutions to the (3+1)-dimensional Jimbo-Miwa equation. Int. J. Nonlinear Sci. Numer. 17, 355-359 (2016) · Zbl 1401.35273 · doi:10.1515/ijnsns-2015-0050
[45] Lü, X., Ma, W.X., Khalique, C.M.: A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg – de Vries-like model. Appl. Math. Lett. 50, 37-42 (2015) · Zbl 1327.35341 · doi:10.1016/j.aml.2015.06.003
[46] Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 31, 40-46 (2016) · Zbl 1467.35300 · doi:10.1016/j.cnsns.2015.07.007
[47] Lü, X., Ma, W.X., Yu, J., Lin, Fh, Khalique, C.M.: Envelope bright-soliton and dark-soliton solutions for the Gerdjikov-Ivanov model. Nonlinear Dyn. 82, 1211-1220 (2015) · Zbl 1437.35635 · doi:10.1007/s11071-015-2227-6
[48] Lü, X., Ma, W.X., Zhou, Y., Khalique, C.M.: Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation. Comput. Math. Appl. 71, 1560-1567 (2016) · Zbl 1443.35136 · doi:10.1016/j.camwa.2016.02.017
[49] Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217-1222 (2016) · Zbl 1355.35159 · doi:10.1007/s11071-016-2755-8
[50] Lü, X., Ma, W.X., Chen, S.T., Chaudry, M.K.: A note on rational solutions to a Hirota-Satsuma-like equation. Appl. Math. Lett. 58, 13-18 (2016) · Zbl 1343.35066 · doi:10.1016/j.aml.2015.12.019
[51] Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dyn. 86, 523-534 (2016) · Zbl 1349.35007 · doi:10.1007/s11071-016-2905-z
[52] Gao, L.N., Zhao, X.Y., Zi, Y.Y., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72, 1225-1229 (2016) · Zbl 1361.35155 · doi:10.1016/j.camwa.2016.06.008
[53] Gao, L.N., Zi, Y.Y., Yin, Y.H., Ma, W.X., Lü, x: Bäcklund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 89, 2233-2240 (2017) · doi:10.1007/s11071-017-3581-3
[54] Lü, X., Lin, F.H.: Soliton excitations and shape-changing collisions in alphahelical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. 32, 241-261 (2016) · Zbl 1510.35309 · doi:10.1016/j.cnsns.2015.08.008
[55] Lin, F.H., Chen, S.T., Qu, Q.X., Wang, J.P., Zhou, X.W., Lü, X.: Resonant multiple wave solutions to a new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation: linear superposition principle. Appl. Math. Lett. 78, 112-117 (2018) · Zbl 1383.35193 · doi:10.1016/j.aml.2017.10.013
[56] Lü, X., Wang, J.P., Lin, F.H., Zhou, X.W.: Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dyn. 91(2), 1249-1259 (2018) · doi:10.1007/s11071-017-3942-y
[57] Yin, Y.H., Ma, W.X., Liu, J.G., Lü, X.: Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76, 1275-1283 (2018) · Zbl 1434.35172 · doi:10.1016/j.camwa.2018.06.020
[58] Batwa, S., Ma, W.X.: A study of lump-type and interaction solutions to a (3+1)-dimensional Jimbo-Miwa-like equation. Comput. Math. Appl. 76, 1576-1582 (2018) · Zbl 1434.35147 · doi:10.1016/j.camwa.2018.07.008
[59] Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251-257 (1991) · doi:10.1016/0893-6080(91)90009-T
[60] Chen, S.T., Ma, W.X.: Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation. Front. Math. China 13(3), 525-534 (2018) · Zbl 1403.35259 · doi:10.1007/s11464-018-0694-z
[61] Chen, S.T., Ma, W.X.: Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation. Comput. Math. Appl. 76, 1680-1685 (2018) · Zbl 1434.35153 · doi:10.1016/j.camwa.2018.07.019
[62] Manukure, S., Zhou, Y., Ma, W.X.: Lump solutions to a (2+1)-dimensional extended KP equation. Comput. Math. Appl. 75, 2414-2419 (2018) · Zbl 1409.35183 · doi:10.1016/j.camwa.2017.12.030
[63] Zhao, H.Q., Ma, W.X.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74, 1399-1405 (2017) · Zbl 1394.35461 · doi:10.1016/j.camwa.2017.06.034
[64] Yang, J.Y., Ma, W.X., Qin, Z.Y.: Abundant mixed lump-soliton solutions to the BKP equation. East Asian J. Appl. Math. 8(2), 224-232 (2018) · Zbl 1464.35295 · doi:10.4208/eajam.210917.051217a
[65] Ma, W.X.: Lump and interaction solutions of linear PDEs in (3+1)-dimensions. East Asian J. Appl. Math. https://doi.org/10.4208/eajam.100218.300318 · Zbl 1464.35288
[66] Ma, W.X.: Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs. J. Geom. Phys. 133, 10-16 (2018) · Zbl 1401.35261 · doi:10.1016/j.geomphys.2018.07.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.