×

Explicit families of functions on the sphere with exactly known Sobolev space smoothness. (English) Zbl 1405.65076

Dick, Josef (ed.) et al., Contemporary computational mathematics – a celebration of the 80th birthday of Ian Sloan. In 2 volumes. Cham: Springer (ISBN 978-3-319-72455-3/hbk; 978-3-319-72456-0/ebook). 153-177 (2018).
Summary: We analyze explicit trial functions defined on the unit sphere \(\mathbb S^d\) in the Euclidean space \(\mathbb R^{d+1}\), \(d\geq 1\), that are integrable in the \(\mathbb L_p\)-sense, \(p\in [1, \infty)\). These functions depend on two free parameters: one determines the support and one, a critical exponent, controls the behavior near the boundary of the support. Three noteworthy features are: (1) they are simple to implement and capture typical behavior of functions in applications, (2) their integrals with respect to the uniform measure on the sphere are given by explicit formulas and, thus, their numerical values can be computed to arbitrary precision, and (3) their smoothness can be defined a priori, that is to say, they belong to Sobolev spaces \(\mathbb H^s(\mathbb S^d)\) up to a specified index \(\bar {s}\) determined by the parameters of the function. Considered are zonal functions \(g(x) = h(x \cdot p)\), where \(p\) is some fixed pole on \(\mathbb S^d\). The function \(h(t)\) is of the type \([\max \{t,T\}]^\alpha\) or a variation of a truncated power function \(x \mapsto (x)_+^\alpha\) (which assumes 0 if \(x\leq 0\) and is the power \(x^\alpha\) if \(x > 0\) that reduces to \([\max \{t-T,0\}]^\alpha\), \([\max \{t^2-T^2,0\}]^\alpha\), and \([\max \{T^2-t^2,0\}]^\alpha\) if \(\alpha > 0\). These types of trial functions have as support the whole sphere, a spherical cap centered at \(p\), a bi-cap centered at the antipodes \(p\), -\(p\), or an equatorial belt. We give inclusion theorems that identify the critical smoothness \(\bar {s} = \bar {s}(T,\alpha )\) and explicit formulas for the integral over the sphere. We obtain explicit formulas for the coefficients in the Laplace-Fourier expansion of these trial functions and provide the leading order term in the asymptotics for large index of the coefficients.
For the entire collection see [Zbl 1398.65010].

MSC:

65J05 General theory of numerical analysis in abstract spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] An, C., Chen, X., Sloan, I.H., Womersley, R.S.: Well conditioned spherical designs for integration and interpolation on the two-sphere. SIAM J. Numer. Anal. 48(6), 2135-2157 (2010) · Zbl 1232.65043 · doi:10.1137/100795140
[2] An, C., Chen, X., Sloan, I.H., Womersley, R.S.: Regularized least squares approximations on the sphere using spherical designs. SIAM J. Numer. Anal. 50(3), 1513-1534 (2012) · Zbl 1253.65035 · doi:10.1137/110838601
[3] Berens, H., Butzer, P.L., Pawelke, S.: Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten. Publ. Res. Inst. Math. Sci. Ser. A 4, 201-268 (1968/1969) · Zbl 0201.08402 · doi:10.2977/prims/1195194875
[4] Bilyk, D., Lacey, T.: One bit sensing, discrepancy, and Stolarsky principle. Mat. Sb. 208(6), 4-25 (2017) · Zbl 1388.11052 · doi:10.4213/sm8656
[5] Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. (2) 178(2), 443-452 (2013) · Zbl 1270.05026 · doi:10.4007/annals.2013.178.2.2
[6] Brauchart, J.S., Dick, J.: Quasi-Monte Carlo rules for numerical integration over the unit sphere \(\mathbb S^2\). Numer. Math. 121(3), 473-502 (2012) · Zbl 1258.65003 · doi:10.1007/s00211-011-0444-6
[7] Brauchart, J.S., Dick, J.: A characterization of Sobolev spaces on the sphere and an extension of Stolarsky’s invariance principle to arbitrary smoothness. Constr. Approx. 38(3), 397-445 (2013) · Zbl 1284.41013 · doi:10.1007/s00365-013-9217-z
[8] Brauchart, J.S., Dick, J.: A simple proof of Stolarsky’s invariance principle. Proc. Am. Math. Soc. 141(6), 2085-2096 (2013) · Zbl 1275.41024 · doi:10.1090/S0002-9939-2013-11490-5
[9] Brauchart, J.S., Hesse, K.: Numerical integration over spheres of arbitrary dimension. Constr. Approx. 25(1), 41-71 (2007) · Zbl 1106.41028 · doi:10.1007/s00365-006-0629-4
[10] Brauchart, J.S., Saff, E.B., Sloan, I.H., Womersley, R.S.: QMC designs: optimal order quasi Monte Carlo integration schemes on the sphere. Math. Comput. 83(290), 2821-2851 (2014) · Zbl 1315.65003 · doi:10.1090/S0025-5718-2014-02839-1
[11] Brauchart, J.S., Dick, J., Saff, E.B., Sloan, I.H., Wang, Y.G., Womersley, R.S.: Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces. J. Math. Anal. Appl. 431(2), 782-811 (2015) · Zbl 1325.65037 · doi:10.1016/j.jmaa.2015.05.079
[12] Brauchart, J.S., Dick, J., Fang, L.: Spatial low-discrepancy sequences, spherical cone discrepancy, and applications in financial modeling. J. Comput. Appl. Math. 286, 28-53 (2015) · Zbl 1317.65005 · doi:10.1016/j.cam.2015.02.023
[13] Chen, X., Womersley, R.S.: Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J. Numer. Anal. 44(6), 2326-2341 (electronic) (2006) · Zbl 1129.65035 · doi:10.1137/050626636
[14] Chen, X., Frommer, A., Lang, B.: Computational existence proofs for spherical t-designs. Numer. Math. 117(2), 289-305 (2011) · Zbl 1208.65032 · doi:10.1007/s00211-010-0332-5
[15] Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6(3), 363-388 (1977) · Zbl 0376.05015 · doi:10.1007/BF03187604
[16] Frenzen, C.L., Wong, R.: A uniform asymptotic expansion of the Jacobi polynomials with error bounds. Can. J. Math. 37(5), 979-1007 (1985) · Zbl 0563.33008 · doi:10.4153/CJM-1985-053-5
[17] Genz, A.: Testing multidimensional integration routines. In: Proceedings of International Conference on Tools, Methods and Languages for Scientific and Engineering Computation, pp. 81-94. Elsevier North-Holland, Inc., New York, NY (1984)
[18] Genz, A.: Fully symmetric interpolatory rules for multiple integrals over hyper-spherical surfaces. J. Comput. Appl. Math. 157(1), 187-195 (2003) · Zbl 1028.65015 · doi:10.1016/S0377-0427(03)00413-8
[19] Grabner, P.J., Klinger, B., Tichy, R.F.: Discrepancies of point sequences on the sphere and numerical integration. In: Multivariate Approximation (Witten-Bommerholz, 1996). Mathematical Research, vol. 101, pp. 95-112. Akademie Verlag, Berlin (1997) · Zbl 0889.65017
[20] Hahn, E.: Asymptotik bei Jacobi-Polynomen und Jacobi-Funktionen. Math. Z. 171(3), 201-226 (1980) · Zbl 0411.33008 · doi:10.1007/BF01214987
[21] Hesse, K.: A lower bound for the worst-case cubature error on spheres of arbitrary dimension. Numer. Math. 103(3), 413-433 (2006) · Zbl 1089.41025 · doi:10.1007/s00211-006-0686-x
[22] Hesse, K., Sloan, I.H.: Optimal lower bounds for cubature error on the sphere S^2. J. Complexity 21(6), 790-803 (2005) · Zbl 1099.41023 · doi:10.1016/j.jco.2005.07.004
[23] Hesse, K., Sloan, I.H.: Worst-case errors in a Sobolev space setting for cubature over the sphere S^2. Bull. Aust. Math. Soc. 71(1), 81-105 (2005) · Zbl 1068.41049 · doi:10.1017/S0004972700038041
[24] Hesse, K., Sloan, I.H.: Cubature over the sphere S^2 in Sobolev spaces of arbitrary order. J. Approx. Theory 141(2), 118-133 (2006) · Zbl 1102.41027 · doi:10.1016/j.jat.2006.01.004
[25] Hesse, K., Sloan, I.H.: Hyperinterpolation on the sphere. In: Frontiers in Interpolation and Approximation. Pure and Applied Mathematics (Boca Raton), vol. 282, pp. 213-248. Chapman & Hall/CRC, Boca Raton, FL (2007) · Zbl 1194.41044 · doi:10.1201/9781420011388.ch11
[26] Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical Integration on the Sphere, pp. 2671-2710. Springer, Berlin (2015) · doi:10.1007/978-3-642-54551-1_40
[27] Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. 67(221), 299-322 (1998) · Zbl 0889.41025 · doi:10.1090/S0025-5718-98-00894-1
[28] Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput. 70(235), 1113-1130 (2001) · Zbl 0980.76070 · doi:10.1090/S0025-5718-00-01240-0
[29] Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966) · Zbl 0138.05101 · doi:10.1007/BFb0094788
[30] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.10 of 2015-08-07
[31] Olver, F.W.J.: Asymptotics and Special Functions. Computer Science and Applied Mathematics. Academic [A Subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1974) · Zbl 0303.41035
[32] Owen, A.B.: The dimension distribution and quadrature test functions. Stat. Sin. 13(1), 1-17 (2003) · Zbl 1017.62060
[33] Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Special functions, vol. 2. Gordon & Breach Science Publishers, New York (1986). Translated from the Russian by N.M. Queen · Zbl 0733.00004
[34] Renka, R.J.: Multivariate interpolation of large sets of scattered data. ACM Trans. Math. Softw. 14, 139-148 (1988) · Zbl 0642.65006 · doi:10.1145/45054.45055
[35] Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21(1-2), 107-125 (2004) · Zbl 1055.65038 · doi:10.1023/B:ACOM.0000016428.25905.da
[36] Sloan, I.H., Womersley, R.S.: A variational characterisation of spherical designs. J. Approx. Theory 159(2), 308-318 (2009) · Zbl 1183.05015 · doi:10.1016/j.jat.2009.02.014
[37] Sloan, I.H., Womersley, R.S.: Filtered hyperinterpolation: a constructive polynomial approximation on the sphere. GEM Int. J. Geomath. 3(1), 95-117 (2012) · Zbl 1259.65017 · doi:10.1007/s13137-011-0029-7
[38] Stolarsky, K.B.: Sums of distances between points on a sphere. II. Proc. Am. Math. Soc. 41, 575-582 (1973) · Zbl 0274.52012 · doi:10.1090/S0002-9939-1973-0333995-9
[39] Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: test functions and datasets. Retrieved September 20, 2016, from http://www.sfu.ca/ ssurjano
[40] Szegő, G.: Orthogonal Polynomials. Colloquium Publications, vol. XXIII, 4th edn. American Mathematical Society, Providence (1975) · Zbl 0305.42011
[41] Ursell, F.: Integrals with nearly coincident branch points: Gegenbauer polynomials of large degree. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463(2079), 697-710 (2007) · Zbl 1257.33017 · doi:10.1098/rspa.2006.1787
[42] Wang, Y.: Filtered polynomial approximation on the sphere. Bull. Aust. Math. Soc. 93(1), 162-163 (2016) · Zbl 1330.42024 · doi:10.1017/S000497271500132X
[43] Wang, H., Wang, K.: Optimal recovery of Besov classes of generalized smoothness and Sobolev classes on the sphere. J. Complexity 32(1), 40-52 (2016) · Zbl 1329.41034 · doi:10.1016/j.jco.2015.07.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.