×

One-bit sensing, discrepancy and Stolarsky’s principle. (English. Russian original) Zbl 1388.11052

Sb. Math. 208, No. 6, 744-763 (2017); translation from Mat. Sb. 208, No. 6, 4-25 (2017).
The paper is concerned with the following question: what is the minimal number of hyperplanes such that the geodesic distance between any two points on the unit sphere is well approximated by the proportion of hyperplanes which separate the points. This problem is related to one-bit sensing, geometric functional analysis, and combinatorial geometry. For \(0<\delta<1\) the authors estimate the smallest integer \(N= N (d, \delta)\) such that there is a so-called “sign-linear map” on the \(d\)-dimensional sphere which has the \(\delta\)-restricted isometric property. Up to a polylogarithmic factor \[ N (d, \delta)\approx \delta^{-2+2/(d+1)}, \] which has a “dimensional correction” in the power of \(\delta\): The method of proof involves geometric discrepancy theory. The authors also obtain an analogue of Stolarsky’s invariance principle which implies that minimizing the \(L^{2}\)-average of the embedding error is equivalent to minimizing the discrete energy \[ \sum_{i,j}(\frac{1}{2}-\gamma(z_{i}, z_{j}))^{2}, \] where \(\gamma\) is the normalized geodesic distance or the \(d-\)dimensional sphere. The paper also gives a useful survey on spherical discrepancy results of J. Beck [Acta Arith. 43, 115–130 (1984; Zbl 0536.10041); Mathematika 31, 33–41 (1984; Zbl 0553.51013)] and M. Blümlinger [Mathematika 38, No. 1, 105–116 (1991; Zbl 0778.11040)] and on relations to geometric functional analysis.

MSC:

11K38 Irregularities of distribution, discrepancy
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

References:

[1] C. Aistleitner, J. S. Brauchart and J. Dick 2012 Point sets on the sphere \(\mathbb{S}^2\) with small spherical cap discrepancy Discrete Comput. Geom.48 4 990-1024 · Zbl 1272.65003 · doi:10.1007/s00454-012-9451-3
[2] K. Ball 2013 The Ribe programme Séminaire Bourbaki, Exposés 1043-1058 Astérisque 352, 2011/2012 Soc. Math. France, Paris viii, 147-159 Exp. No. 1047 · Zbl 1303.46019
[3] R. Baraniuk, M. Davenport, R. DeVore and M. Wakin 2008 A simple proof of the restricted isometry property for random matrices Constr. Approx.28 3 253-263 · Zbl 1177.15015 · doi:10.1007/s00365-007-9003-x
[4] R. Baraniuk, S. Foucart, D. Needell, Y. Plan and M. Wootters 2008 Exponential decay of reconstruction error from binary measurements of sparse signals 1407.8246
[5] J. Beck 1984 Some upper bounds in the theory of irregularities of distribution Acta Arith.43 2 115-130 · Zbl 0536.10041
[6] J. Beck 1984 Sums of distances between points on a sphere – an application of the theory of irregularities of distribution to discrete geometry Mathematika31 1 33-41 · Zbl 0553.51013 · doi:10.1112/S0025579300010639
[7] J. Beck and W. W. L. Chen 1987 Irregularities of distribution Cambridge Tracts in Math. 89 Cambridge Univ. Press, Cambridge xiv+294 pp. · Zbl 0617.10039 · doi:10.1017/CBO9780511565984
[8] J. J. Benedetto and M. Fickus 2003 Finite normalized tight frames Adv. Comput. Math.18 2-4 357-385 · Zbl 1028.42022 · doi:10.1023/A:1021323312367
[9] D. Bilyk, F. Dai and R. Matzke 2003 Stolarsky principle and energy optimization on the sphere 1611.04420
[10] D. Bilyk and M. T. Lacey 2003 Random tessellations, restricted isometric embeddings, and one bit sensing 1512.06697
[11] M. Blümlinger 1991 Slice discrepancy and irregularities of distribution on spheres Mathematika38 1 105-116 · Zbl 0778.11040 · doi:10.1112/S0025579300006483
[12] P. Boufounos and R. Baraniuk 2008 1-bit compressive sensing 2008 42nd annual conference on information sciences and systems CISS IEEE, Princeton, NJ 16-21 · doi:10.1109/CISS.2008.4558487
[13] J. Bourgain and J. Lindenstrauss 1988 Distribution of points on spheres and approximation by zonotopes Israel J. Math.64 1 25-31 · Zbl 0667.52001 · doi:10.1007/BF02767366
[14] J. S. Brauchart and J. Dick 2013 A simple proof of Stolarsky’s invariance principle Proc. Amer. Math. Soc.141 6 2085-2096 · Zbl 1275.41024 · doi:10.1090/S0002-9939-2013-11490-5
[15] J. S. Brauchart, J. Dick, E. B. Saff, I. H. Sloan, Y. G. Wang and R. S. Womersley 2015 Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces J. Math. Anal. Appl.431 2 782-811 · Zbl 1325.65037 · doi:10.1016/j.jmaa.2015.05.079
[16] E. J. Candes and T. Tao 2006 Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory52 12 5406-5425 · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[17] P. G. Casazza, D. Redmond and J. C. Tremain 2008 Real equiangular frames 2008 42nd annual conference on information sciences and systems IEEE, Princeton, NJ 715-720 · doi:10.1109/CISS.2008.4558615
[18] B. Chazelle 2000 The discrepancy method. Randomness and complexity Cambridge Univ. Press, Cambridge xviii+463 pp. · Zbl 0960.65149 · doi:10.1017/CBO9780511626371
[19] A. Dvoretzky 1961 Some results on convex bodies and Banach spaces Proc. Internat. Sympos. Linear SpacesJerusalem 1960 Jerusalem Academic Press, Jerusalem, Pergamon, Oxford 123-160 · Zbl 0119.31803
[20] U. Feige and G. Schechtman 2002 On the optimality of the random hyperplane rounding technique for MAX CUT Random Structures Algorithms20 3 403-440 · Zbl 1005.90052 · doi:10.1002/rsa.10036
[21] S. Foucart and H. Rauhut 2013 A mathematical introduction to compressive sensing Appl. Numer. Harmon. Anal. Birkhäuser/Springer, New York xviii+625 pp. · Zbl 1315.94002 · doi:10.1007/978-0-8176-4948-7
[22] K. G. Larsen and J. Nelson 2016 The Johnson-Lindenstrauss lemma is optimal for linear dimensionality reduction 43rd international colloquium on automata, languages, and programming (ICALP 2016)Rome 2016 LIPIcs 55 Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl 82 11 pp. · Zbl 1394.46009 · doi:10.4230/LIPIcs.ICALP.2016.82
[23] L. Jacques, K. Degraux and C. De Vleeschouwer 2013 Quantized iterative hard thresholding: bridging 1-bit and high-resolution quantized compressed sensing 10th international conference on sampling theory and applications (SampTA 2013) 105-108 http://www.eurasip.org/Proceedings/Ext/SampTA2013/papers/p105-jacques.pdf
[24] L. Jacques, J. N. Laska, P. T. Boufounos and R. G. Baraniuk 2013 Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors IEEE Trans. Inform. Theory59 4 2082-2102 · Zbl 1364.94130 · doi:10.1109/TIT.2012.2234823
[25] P. Leopardi 2006 A partition of the unit sphere into regions of equal area and small diameter Electron. Trans. Numer. Anal.25 309-327 · Zbl 1160.51304
[26] P. Leopardi 2009 Diameter bounds for equal area partitions of the unit sphere Electron. Trans. Numer. Anal.35 1-16 · Zbl 1276.51008
[27] J. Matoušek 1999 Geometric discrepancy. An illustrated guide Algorithms Combin. 18 Springer-Verlag, Berlin xii+288 pp. · Zbl 1197.11092 · doi:10.1007/978-3-642-03942-3
[28] A. Naor 2012 An introduction to the Ribe program Jpn. J. Math.7 2 167-233 · Zbl 1261.46013 · doi:10.1007/s11537-012-1222-7
[29] F. Pausinger and S. Steinerberger 2016 On the discrepancy of jittered sampling J. Complexity33 199-216 1510.00251 · Zbl 1330.05022 · doi:10.1016/j.jco.2015.11.003
[30] Y. Plan and R. Vershynin 2013 One-bit compressed sensing by linear programming Comm. Pure Appl. Math.66 8 1275-1297 · Zbl 1335.94018 · doi:10.1002/cpa.21442
[31] Y. Plan and R. Vershynin 2013 Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach IEEE Trans. Inform. Theory59 1 482-494 · Zbl 1364.94153 · doi:10.1109/TIT.2012.2207945
[32] Y. Plan and R. Vershynin 2014 Dimension reduction by random hyperplane tessellations Discrete Comput. Geom.51 2 438-461 · Zbl 1296.52014 · doi:10.1007/s00454-013-9561-6
[33] A. Reznikov and E. B. Saff 2016 The covering radius of randomly distributed points on a manifold Int. Math. Res. Not. IMRN2016 19 6065-6094 · Zbl 1404.60005 · doi:10.1093/imrn/rnv342
[34] G. Schechtman 2006 Two observations regarding embedding subsets of Euclidean spaces in normed spaces Adv. Math.200 1 125-135 · Zbl 1108.46011 · doi:10.1016/j.aim.2004.11.003
[35] K. B. Stolarsky 1973 Sums of distances between points on a sphere. II Proc. Amer. Math. Soc.41 2 575-582 · Zbl 0274.52012 · doi:10.1090/S0002-9939-1973-0333995-9
[36] S. Tabachnikov 2005 Geometry and billiards Stud. Math. Libr. 30 Amer. Math. Soc., Providence, RI, Mathematics Advanced Study Semesters, University Park, PA xii+176 pp. · Zbl 1119.37001 · doi:10.1090/stml/030
[37] V. Temlyakov 2011 Greedy approximation Cambridge Monogr. Appl. Comput. Math. 20 Cambridge Univ. Press, Cambridge xiv+418 pp. · Zbl 1279.41001 · doi:10.1017/CBO9780511762291
[38] S. Torquato 2010 Reformulation of the covering and quantizer problems as ground states of interacting particles Phys. Rev. E (3)82 5 056109 52 pp. 1009.1443 · doi:10.1103/PhysRevE.82.056109
[39] R. Vershynin 2012 Introduction to the non-asymptotic analysis of random matrices Compressed sensing Cambridge Univ. Press, Cambridge 210-268 · doi:10.1017/CBO9780511794308.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.