×

Upwinded finite difference schemes for dense snow avalanche modeling. (English) Zbl 0974.76058

From the summary: One-dimensional dense snow avalanche equations are numerically solved using conservative variables and stable upwinded total variation diminishing finite difference schemes. The numerical model is applied to simulate avalanche motion in general terrain. The proposed discretization schemes do not use artificial damping, an important requirement for the application of numerical models in practice. The simulation of both laboratory experiments and a field case study are presented to demonstrate the discretization schemes.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
86A40 Glaciology
Full Text: DOI

References:

[1] The Avalanche Handbook. Mountaineers Books, 1993.
[2] Buser, Journal of Glaciology 26 pp 121– (1980) · doi:10.1017/S0022143000010662
[3] Berechnung von Fliesslawinen, eine Anleitung für Praktiker mit Beispielen. In Mitteilungen des Eidgenössischen Institutes für Schnee und Lawinenforschung, Vol. 47. Davos: Switerland, 1990.
[4] A comparison between steady and transient dense snow avalanche models. In Proceedings of the Symposium, 60 Years Snow and Avalanche Research. Davos: Switzerland, 1996.
[5] Hutter, Acta Mechanica 109 pp 127– (1995) · doi:10.1007/BF01176820
[6] Model of avalanches in three spatial dimensions, comparison to theory and experiments. CRREL Report 94-5, 1994.
[7] Norem, Annals of Glaciology 13 pp 218– (1989) · doi:10.1017/S026030550000793X
[8] Numerical Computation of Internal and External Flows, Vol. 1 and 2. Wiley: New York, 1990.
[9] Savage, Journal of Fluid Mechanics 199 pp 177– (1989) · Zbl 0659.76044 · doi:10.1017/S0022112089000340
[10] Salm, Annals of Glaciology 18 pp 221– (1993) · doi:10.1017/S0260305500011551
[11] On non-uniform, steady flow of avalanching snow. International Association of Scientific Hydrology, Publ., No. 79.
[12] Salm, Annals of Glaciology 6 pp 26– (1985) · doi:10.1017/S0260305500009939
[13] Numerical Solutions of the Euler Equations for Steady Flow Problems. Notes on Numerical Fluid Mechanics. Vieweg, 1993.
[14] Dressler, Journal of Hydraulic Research 16 pp 205– (1978) · doi:10.1080/00221687809499617
[15] Euler and Navier-Stokes equations for compressible flows: finite volume methods. In Handbook of Computational Fluid Mechanics, (ed). Academic Press: New York, 1996.
[16] Partial Differential Equations III. Springer-Verlag: Berlin, 1996. · doi:10.1007/978-1-4757-4190-2
[17] Shallow Water Hydrodynamics. Elsevier Oceanography Series, Water & Power Press: Beijing, 1992.
[18] Harten, Journal of Computational Physics 49 pp 357– (1983) · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[19] Harten, SIAM Journal on Numerical Analysis 21 pp 1– (1984) · Zbl 0547.65062 · doi:10.1137/0721001
[20] Harten, SIAM Journal on Numerical Analysis 24 pp 27– (1987) · Zbl 0627.65102 · doi:10.1137/0724022
[21] Harten, Journal of Computational Physics 71 pp 231– (1987) · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[22] Harten, Journal of Computational Physics 71 pp 231– (1987) · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[23] Bartelt, Journal of Glaciology 45 pp 242– (1999) · doi:10.3189/002214399793377301
[24] McClung, Journal of Glaciology 41 pp 359– (1995) · doi:10.1017/S0022143000016233
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.