×

A new model for snow avalanche dynamics based on non-Newtonian fluids. (English) Zbl 1258.74007

Summary: The purpose of this paper is to develop a model to describe the snow avalanche dynamics emphasizing the phenomenon of entrainment, the shape variation and the velocity profile thanks to the peculiar features of non-Newtonian fluids, in particular those showing shear thinning and Bingham-like constitutive behaviours. Two different approaches are proposed to simulate the avalanches numerically. The first considers the transformation of the avalanche domain into a simple shape domain that does not change in time. The second is based on the level set method, which is suitable for free boundary problems. Finally, the characteristics of the variation of the interface between avalanche and snowcover under a similarity hypothesis is put forward. The model is validated through the comparison with some experimental data.

MSC:

74A05 Kinematics of deformation
86A40 Glaciology

Software:

COMSOL
Full Text: DOI

References:

[1] Barbolini M, Cappabianca F, Issler D, Gauer P, Eglit M (2003) WP5: model development and validation. Erosion and deposition processes in snow avalanche dynamics: report on the state of the art. SATSIE project
[2] Beghin P, Olagne X (1991) Experimental and theoretical study of the dynamics of powder snow avalanches. Cold Reg Sci Technol 19:317–326 · doi:10.1016/0165-232X(91)90046-J
[3] Bovet E, Preziosi L, Chiaia B, Barpi F (2007) The level set method applied to avalanches. In: Proceedings of the European COMSOL conference 2007, Grenoble, France, vol 1, pp 321–325
[4] Bovet E, Preziosi L, Chiaia B (2009) Numerical analysis of snow avalanche mechanics and interaction with structures. XIX national congress of Associazione Italiana di Meccanica Teorica ed Applicata (AIMETA), Ancona (IT) September 2009
[5] COMSOL (2005) Comsol multiphysics: rising bubble modeled with the level set method
[6] Coussot P, Ancey C (1999) Rhéophisique des pates et des suspensions. In: EDP sciences, pp 227–240
[7] Dent JD, Lang TE (1980) Modeling of snow flow. J Glaciol 26:131–140
[8] Dent JD, Lang TE (1983) A biviscous modified Bingham model of snow avalanche motion. Ann Glaciol 4:42–46
[9] Egli T (1999) Richtlinie Objektschutz gegen Naturgefahren, Gebaudeversicherungsanstalt des Kantons St. Gallen
[10] Eglit ME, Demidov KS (2005) Mathematical modeling of snow entrainment in avalanche motion. Cold Reg Sci Technol 43:10–23 · doi:10.1016/j.coldregions.2005.03.005
[11] Farina A (1997) Waxy crude oils: some aspects of their dynamics. Math Mod Methods Appl Sci 7(4):435–455 · Zbl 0882.76006 · doi:10.1142/S0218202597000244
[12] Farina A, Preziosi L (1997) Flow of waxy crude oils. In: Progress in industrial mathematics, pp 306–313
[13] Farina A, Fasano A (1997) Flow characteristics of waxy crude oils in laboratory experimental loops. Math Comput Model 25(5):75–86 · Zbl 0886.76004 · doi:10.1016/S0895-7177(97)00031-9
[14] Gauer P, Issler D (2004) Possible erosion mechanism in snow avalanches. Ann Glaciol 38:384–392 · doi:10.3189/172756404781815068
[15] Norem H, Irgens F, Schieldrop B (1989) Simulation of snow-avalanche flow in run-out zones. Ann Glaciol 13:218–225
[16] Harbitz C (1998) A survey of computational models for snow avalanche motion. Norwegian Geotechnical Institute, Oslo, NGI report 581220-1
[17] Kern M, Tiefenbacher F (2004) Experimental devices to determine snow avalanche basal friction and velocity profiles. Cold Reg Sci Technol 38:17–30 · doi:10.1016/S0165-232X(03)00060-0
[18] Kern M, Tiefenbacher F, McElwaine JN (2004) The rheology of snow in large chute flows. Cold Reg Sci Technol 39:181–192 · doi:10.1016/j.coldregions.2004.03.006
[19] Leppert C, Dinkler D (2006) A two-phase model for granular flows applied to avalanches. In: III European conference on computational mechanics solids, structures and coupled problems in engineering
[20] Macosko CHW (1994) Rheology: principles, measurements and applications. Wiley, New York
[21] Naaim M, Ancey C (1992) Dense avalanche model. European Summer University, Chamonix, Cemagref Publications, pp 173–181
[22] Naaim M, Bouchet A (2003) Etude expérimentale des écoulements d’avalanches de neige dense. Mesures et interprétations des profils de vitesse en écoulements quasi permanents et pleinement développés. Rapport scientifique. UR ETNA, Grenoble
[23] Naaim M, Faug T, Naaim-Bouvet F (2003) Dry granular flow modelling including erosion and deposition. Surv Geophys 24:569–585 · doi:10.1023/B:GEOP.0000006083.47240.4c
[24] Nadeem S, Asghar S, Hayat T, Hussain M (2008) The Rayleigh Stokes problem for rectangular pipe in Maxwell and second grade fluid. Meccanica 43:495–504 · Zbl 1163.76319 · doi:10.1007/s11012-008-9113-y
[25] Nettuno L (1996). La modellazione delle valanghe di neve densa: aspetti modellistici e sperimentali (On modeling of flowing avalanches: modelisation and experimentation). PhD thesis, University of Pavia
[26] Nishimura K, Maeno N (1989) Contribution of viscous forces to avalanche dynamics. Ann Glaciol 13:202–206
[27] Perla RI Cheng TT, McClung DM (1980) A two-parameter model of snow-avalanche motion. J Glaciol 26(94):197–207
[28] Rastello MC (2002) Etude de la dynamique des avalanches de neige en aérosol. PhD thesis, Centre d’Etude du Machinisme Agricole du Génie Rural et Forestier (CEMAGREF), Saint Martin d’Héres France
[29] Romano A, Lancellotta R, Marasco A (2006) Continuum mechanics using Mathematica. Fundamentals, applications, and scientific computing. Birkhäuser, Basel · Zbl 1090.76001
[30] Salm B (1966) Contribution to avalanche dynamics. In: International association of scientific, hydrology publication 69 (Symposium at Davos 1965–Scientific aspects of snow and ice avalanches), pp 199–214
[31] Sartoris G, Bartelt P (2000) Upwinded finite difference schemes for dense snow avalanche modeling. Int J Numer Methods Fluids 32(7):799–821 · Zbl 0974.76058 · doi:10.1002/(SICI)1097-0363(20000415)32:7<799::AID-FLD989>3.0.CO;2-2
[32] Savage S, Hutter K (1991) The dynamics of granular materials from initiation to runout, part I: analysis. Acta Mech 86:201–231 · Zbl 0732.73053 · doi:10.1007/BF01175958
[33] Sovilla B, Bartelt P (2001) Observation and modelling of snow avalanche entrainment. Nat Hazards Earth Syst Sci 2:169–179 · doi:10.5194/nhess-2-169-2002
[34] Sovilla B (2004) Field experiments and numerical modelling of mass entrainment. PhD thesis. Swiss Federal Institute of Technology, Zurich, ETH n.15462
[35] Sovilla B, Burlando P, Bartelt P (2006) Field experiments and numerical modeling of mass entrainment in snow avalanches. J Geophys Res 111:1–16 · doi:10.1029/2005JF000391
[36] Sovilla B, Margreth S, Bartelt P (2007) On snow entrainment in avalanche dynamics calculations. 47:69-79
[37] Voellmy A (1955) Über die Zerstrungskraft von Lawinen. Scweiz Bauztg 73 (12/15/17/19), 159–162, 212–217, 246–249, 280–285
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.