×

Numerical simulation to solve two-dimensional temporal-space fractional Bloch-Torrey equation taken of the spin magnetic moment diffusion. (English) Zbl 1513.65412

Summary: Many researchers have expanded a new form of fractional diffusion models named the temporal-space fractional Bloch-Torrey equation (TSF-BTE) to evaluate the diffusion structure of human brain tissues as well as prepare additional insight into other studies of cells and tissues and the microenvironment. The main objective of this paper is to present an effective computational method of solving such models in two dimensions. The temporal and spatial directions are based on the Caputo and the Riemann-Liouville fractional derivative, respectively. The presented numerical scheme is derived from the following manners: at first, the semi-discrete is constructed in the temporal based on a quadratic interpolation with accuracy order \(\mathcal{O}(\tau^{2-\alpha})\) and secondly, the unconditional stability and convergence order are analyzed. For the constructed full-discrete scheme, the spatial derivative terms approximated with the helping of the collocation method based on the Legendre basis. Finally, to illustrate the high precision of the proposed design, we use some test problems. Furthermore, the obtained results are compared with some other techniques under which the suggested methodology is highly accurate and feasible.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
60J60 Diffusion processes
60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Aghdam, Y.E., Mesgrani, H., Javidi, M., Nikan, O.: A computational approach for the space-time fractional advection-diffusion equation arising in contaminant transport through porous media. Eng. Comput. (2020)
[2] Safdari, H.; Mesgarani, H.; Javidi, M.; Aghdam, YE, Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme, Comput. Appl. Math., 39, 2, 1 (2020) · Zbl 1463.65244 · doi:10.1007/s40314-020-1078-z
[3] Turkyilmazoglu, M., Effective computation of exact and analytic approximate solutions to singular nonlinear equations of Lane-Emden-Fowler type, Appl. Math. Model., 37, 14-15, 7539 (2013) · Zbl 1449.65171 · doi:10.1016/j.apm.2013.02.014
[4] Bildik, N.; Deniz, S., A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique, Chaos Solitons Fractals, 132, 109555 (2020) · Zbl 1444.92143 · doi:10.1016/j.chaos.2019.109555
[5] Turkyilmazoglu, M., Parabolic partial differential equations with nonlocal initial and boundary values, Int. J. Comput. Methods, 12, 5, 1550 (2015) · Zbl 1359.65211 · doi:10.1142/S0219876215500243
[6] Magin, RL; Abdullah, O.; Baleanu, D.; Zhou, XJ, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Magn. Reson., 190, 2, 255 (2008) · doi:10.1016/j.jmr.2007.11.007
[7] Yablonskiy, DA; Bretthorst, GL; Ackerman, JJ, Statistical model for diffusion attenuated MR signal, Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med., 50, 4, 664 (2003) · doi:10.1002/mrm.10578
[8] Bennett, K.; Schmainda, K., Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model, Magn. Reson. Med., 50, 4, 727 (2003) · doi:10.1002/mrm.10581
[9] Podlubny I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier (1998) · Zbl 0924.34008
[10] Shen, S.; Liu, F.; Anh, V., Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation, Numer. Algorithms, 56, 3, 383 (2011) · Zbl 1214.65046 · doi:10.1007/s11075-010-9393-x
[11] Srivastava, H.; Deniz, S.; Saad, KM, An efficient semi-analytical method for solving the generalized regularized long wave equations with a new fractional derivative operator, J. King Saud Univ.-Sci., 33, 2, 101345 (2021) · doi:10.1016/j.jksus.2021.101345
[12] Deniz, S., Semi-analytical analysis of Allen-Cahn model with a new fractional derivative, Math. Methods Appl. Sci., 44, 3, 2355 (2021) · Zbl 1475.35334 · doi:10.1002/mma.5892
[13] Ray, SS; Bera, R., An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., 167, 1, 561 (2005) · Zbl 1082.65562
[14] Turkyilmazoglu, M., Parametrized adomian decomposition method with optimum convergence, ACM Trans. Model. Comput. Simul. (TOMACS), 27, 4, 1 (2017) · Zbl 1515.65216 · doi:10.1145/3106373
[15] Deniz, S.; Konuralp, A.; De la Sen, M., Optimal perturbation iteration method for solving fractional model of damped Burgers’ equation, Symmetry, 12, 6, 958 (2020) · doi:10.3390/sym12060958
[16] Guo, S.; Mei, L.; Li, Y., Fractional variational homotopy perturbation iteration method and its application to a fractional diffusion equation, Appl. Math. Comput., 219, 11, 5909 (2013) · Zbl 1273.65157
[17] Velasco, M., Trujillo, J., Reiter, D., Spencer, R., Li, W., Magin, R.: In: Proceedings of FDA’10, the 4th IFAC Workshop Fractional Differentiation and Its Applications, ed vol. 1 (2010), vol. 1
[18] Bu, W.; Tang, Y.; Wu, Y.; Yang, J., Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations, J. Comput. Phys., 293, 264 (2015) · Zbl 1349.65440 · doi:10.1016/j.jcp.2014.06.031
[19] Sun, H.; Sun, Zz; Gao, Gh, Some high order difference schemes for the space and time fractional Bloch-Torrey equations, Appl. Math. Comput., 281, 356 (2016) · Zbl 1410.65329
[20] Yu, Q.; Liu, F.; Turner, I.; Burrage, K., Stability and convergence of an implicit numerical method for the space and time fractional Bloch-Torrey equation, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 371, 1990, 1 (2013) · Zbl 1339.65151
[21] Yu, Q.; Liu, F.; Turner, I.; Burrage, K., Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D, Open Phys., 11, 6, 646 (2013) · doi:10.2478/s11534-013-0220-6
[22] Yu, Q.; Liu, F.; Turner, I.; Burrage, K., A computationally effective alternating direction method for the space and time fractional Bloch-Torrey equation in 3-D, Appl. Math. Comput., 219, 8, 4082 (2012) · Zbl 1311.65114
[23] Song, J.; Yu, Q.; Liu, F.; Turner, I., A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation, Numer. Algorithms, 66, 4, 911 (2014) · Zbl 1408.65057 · doi:10.1007/s11075-013-9768-x
[24] Dehghan, M.; Abbaszadeh, M., An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional Bloch-Torrey equations, Appl. Numer. Math., 131, 190 (2018) · Zbl 1395.65074 · doi:10.1016/j.apnum.2018.04.009
[25] Ervin, VJ; Roop, JP, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ. Int. J., 22, 3, 558 (2006) · Zbl 1095.65118 · doi:10.1002/num.20112
[26] Kumar, K.; Pandey, RK; Sharma, S., Comparative study of three numerical schemes for fractional integro-differential equations, J. Comput. Appl. Math., 315, 287 (2017) · Zbl 1402.65183 · doi:10.1016/j.cam.2016.11.013
[27] Roop, JP, Variational solution of the fractional advection dispersion equation (2004), Clemson: Clemson University, Clemson
[28] Ervin, VJ; Heuer, N.; Roop, JP, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45, 2, 572 (2007) · Zbl 1141.65089 · doi:10.1137/050642757
[29] Safdari, H., Esmaeelzade Aghdam, Y., Gómez-Aguilar, J.F.: Shifted Chebyshev collocation of the fourth kind with convergence analysis for the space-time fractional advectiondiffusion equation . Eng. Comput. 1-12 (2020). doi:10.1007/s00366-020-01092-x
[30] Zhao, Y.; Bu, W.; Zhao, X.; Tang, Y., Galerkin finite element method for two-dimensional space and time fractional Bloch-Torrey equation, J. Comput. Phys., 350, 117 (2017) · Zbl 1380.65294 · doi:10.1016/j.jcp.2017.08.051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.